Loading…

Detecting outliers in the multivariate control charts for dispersion monitoring

Outlier detection is an important aspect of statistical process monitoring (SPM) because outliers affect the performance of control charts. SPM researchers study the negative impact of outliers on control charts for monitoring location parameters. However, there is little research on outlier detecti...

Full description

Saved in:
Bibliographic Details
Published in:Quality and reliability engineering international 2024-06, Vol.40 (4), p.1904-1917
Main Authors: Ajadi, Jimoh Olawale, Raji, Ishaq Adeyanju, Abbas, Nasir, Riaz, Muhammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2540-2c0405813a9018bb297e65201a50929c17dd479846788f1b82e377b2bc1904783
container_end_page 1917
container_issue 4
container_start_page 1904
container_title Quality and reliability engineering international
container_volume 40
creator Ajadi, Jimoh Olawale
Raji, Ishaq Adeyanju
Abbas, Nasir
Riaz, Muhammad
description Outlier detection is an important aspect of statistical process monitoring (SPM) because outliers affect the performance of control charts. SPM researchers study the negative impact of outliers on control charts for monitoring location parameters. However, there is little research on outlier detection in multivariate charts for monitoring process dispersion. This study aims to investigate the impact of outliers in multivariate control charts for monitoring covariance matrix of a process, and then to recommend techniques for detecting potential outliers present from Phase I samples. We propose a new multivariate dispersion chart that employs the determinant of logarithm of estimated covariance matrix as the monitoring statistic. Through Monte Carlo simulations, the results show how outliers from the first phase affect the overall performance of multivariate charts. The results also demonstrate that the minimum volume ellipsoid (MVE) estimator is effective in reducing the effect of outliers on the proposed control scheme than the other compared estimators.
doi_str_mv 10.1002/qre.3500
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3051487825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051487825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2540-2c0405813a9018bb297e65201a50929c17dd479846788f1b82e377b2bc1904783</originalsourceid><addsrcrecordid>eNp10M1KAzEUhuEgCtYqeAkBN26mnmQmTbKUWn-gUBRdh0wmY1OmkzbJKL17U-vW1dk8fAdehK4JTAgAvdsFOykZwAkaEZCyINNSnKIR8EoUAgg_RxcxrgEylmKElg82WZNc_4n9kDpnQ8Sux2ll8WbokvvSwelksfF9Cr7DZqVDirj1ATcubjN3vscb37vkQ165RGet7qK9-rtj9PE4f589F4vl08vsflEYyiooqIEKmCCllkBEXVPJ7ZRRIJqBpNIQ3jQVl6KaciFaUgtqS85rWhsioeKiHKOb4-42-N1gY1JrP4Q-v1QlMFIJLijL6vaoTPAxBtuqbXAbHfaKgDrkUjmXOuTKtDjSb9fZ_b9Ovb7Nf_0PRXBqkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051487825</pqid></control><display><type>article</type><title>Detecting outliers in the multivariate control charts for dispersion monitoring</title><source>Wiley</source><creator>Ajadi, Jimoh Olawale ; Raji, Ishaq Adeyanju ; Abbas, Nasir ; Riaz, Muhammad</creator><creatorcontrib>Ajadi, Jimoh Olawale ; Raji, Ishaq Adeyanju ; Abbas, Nasir ; Riaz, Muhammad</creatorcontrib><description>Outlier detection is an important aspect of statistical process monitoring (SPM) because outliers affect the performance of control charts. SPM researchers study the negative impact of outliers on control charts for monitoring location parameters. However, there is little research on outlier detection in multivariate charts for monitoring process dispersion. This study aims to investigate the impact of outliers in multivariate control charts for monitoring covariance matrix of a process, and then to recommend techniques for detecting potential outliers present from Phase I samples. We propose a new multivariate dispersion chart that employs the determinant of logarithm of estimated covariance matrix as the monitoring statistic. Through Monte Carlo simulations, the results show how outliers from the first phase affect the overall performance of multivariate charts. The results also demonstrate that the minimum volume ellipsoid (MVE) estimator is effective in reducing the effect of outliers on the proposed control scheme than the other compared estimators.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3500</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Control charts ; Covariance matrix ; Data analysis ; minimum volume ellipsoid ; Monitoring ; Monte Carlo simulation ; Multivariate analysis ; multivariate control chart ; outliers ; Outliers (statistics) ; parameter estimation ; Phase I ; Statistical analysis</subject><ispartof>Quality and reliability engineering international, 2024-06, Vol.40 (4), p.1904-1917</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2540-2c0405813a9018bb297e65201a50929c17dd479846788f1b82e377b2bc1904783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ajadi, Jimoh Olawale</creatorcontrib><creatorcontrib>Raji, Ishaq Adeyanju</creatorcontrib><creatorcontrib>Abbas, Nasir</creatorcontrib><creatorcontrib>Riaz, Muhammad</creatorcontrib><title>Detecting outliers in the multivariate control charts for dispersion monitoring</title><title>Quality and reliability engineering international</title><description>Outlier detection is an important aspect of statistical process monitoring (SPM) because outliers affect the performance of control charts. SPM researchers study the negative impact of outliers on control charts for monitoring location parameters. However, there is little research on outlier detection in multivariate charts for monitoring process dispersion. This study aims to investigate the impact of outliers in multivariate control charts for monitoring covariance matrix of a process, and then to recommend techniques for detecting potential outliers present from Phase I samples. We propose a new multivariate dispersion chart that employs the determinant of logarithm of estimated covariance matrix as the monitoring statistic. Through Monte Carlo simulations, the results show how outliers from the first phase affect the overall performance of multivariate charts. The results also demonstrate that the minimum volume ellipsoid (MVE) estimator is effective in reducing the effect of outliers on the proposed control scheme than the other compared estimators.</description><subject>Control charts</subject><subject>Covariance matrix</subject><subject>Data analysis</subject><subject>minimum volume ellipsoid</subject><subject>Monitoring</subject><subject>Monte Carlo simulation</subject><subject>Multivariate analysis</subject><subject>multivariate control chart</subject><subject>outliers</subject><subject>Outliers (statistics)</subject><subject>parameter estimation</subject><subject>Phase I</subject><subject>Statistical analysis</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUhuEgCtYqeAkBN26mnmQmTbKUWn-gUBRdh0wmY1OmkzbJKL17U-vW1dk8fAdehK4JTAgAvdsFOykZwAkaEZCyINNSnKIR8EoUAgg_RxcxrgEylmKElg82WZNc_4n9kDpnQ8Sux2ll8WbokvvSwelksfF9Cr7DZqVDirj1ATcubjN3vscb37vkQ165RGet7qK9-rtj9PE4f589F4vl08vsflEYyiooqIEKmCCllkBEXVPJ7ZRRIJqBpNIQ3jQVl6KaciFaUgtqS85rWhsioeKiHKOb4-42-N1gY1JrP4Q-v1QlMFIJLijL6vaoTPAxBtuqbXAbHfaKgDrkUjmXOuTKtDjSb9fZ_b9Ovb7Nf_0PRXBqkg</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Ajadi, Jimoh Olawale</creator><creator>Raji, Ishaq Adeyanju</creator><creator>Abbas, Nasir</creator><creator>Riaz, Muhammad</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>202406</creationdate><title>Detecting outliers in the multivariate control charts for dispersion monitoring</title><author>Ajadi, Jimoh Olawale ; Raji, Ishaq Adeyanju ; Abbas, Nasir ; Riaz, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2540-2c0405813a9018bb297e65201a50929c17dd479846788f1b82e377b2bc1904783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control charts</topic><topic>Covariance matrix</topic><topic>Data analysis</topic><topic>minimum volume ellipsoid</topic><topic>Monitoring</topic><topic>Monte Carlo simulation</topic><topic>Multivariate analysis</topic><topic>multivariate control chart</topic><topic>outliers</topic><topic>Outliers (statistics)</topic><topic>parameter estimation</topic><topic>Phase I</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajadi, Jimoh Olawale</creatorcontrib><creatorcontrib>Raji, Ishaq Adeyanju</creatorcontrib><creatorcontrib>Abbas, Nasir</creatorcontrib><creatorcontrib>Riaz, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ajadi, Jimoh Olawale</au><au>Raji, Ishaq Adeyanju</au><au>Abbas, Nasir</au><au>Riaz, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting outliers in the multivariate control charts for dispersion monitoring</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2024-06</date><risdate>2024</risdate><volume>40</volume><issue>4</issue><spage>1904</spage><epage>1917</epage><pages>1904-1917</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>Outlier detection is an important aspect of statistical process monitoring (SPM) because outliers affect the performance of control charts. SPM researchers study the negative impact of outliers on control charts for monitoring location parameters. However, there is little research on outlier detection in multivariate charts for monitoring process dispersion. This study aims to investigate the impact of outliers in multivariate control charts for monitoring covariance matrix of a process, and then to recommend techniques for detecting potential outliers present from Phase I samples. We propose a new multivariate dispersion chart that employs the determinant of logarithm of estimated covariance matrix as the monitoring statistic. Through Monte Carlo simulations, the results show how outliers from the first phase affect the overall performance of multivariate charts. The results also demonstrate that the minimum volume ellipsoid (MVE) estimator is effective in reducing the effect of outliers on the proposed control scheme than the other compared estimators.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.3500</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2024-06, Vol.40 (4), p.1904-1917
issn 0748-8017
1099-1638
language eng
recordid cdi_proquest_journals_3051487825
source Wiley
subjects Control charts
Covariance matrix
Data analysis
minimum volume ellipsoid
Monitoring
Monte Carlo simulation
Multivariate analysis
multivariate control chart
outliers
Outliers (statistics)
parameter estimation
Phase I
Statistical analysis
title Detecting outliers in the multivariate control charts for dispersion monitoring
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20outliers%20in%20the%20multivariate%20control%20charts%20for%20dispersion%20monitoring&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Ajadi,%20Jimoh%20Olawale&rft.date=2024-06&rft.volume=40&rft.issue=4&rft.spage=1904&rft.epage=1917&rft.pages=1904-1917&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3500&rft_dat=%3Cproquest_cross%3E3051487825%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2540-2c0405813a9018bb297e65201a50929c17dd479846788f1b82e377b2bc1904783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3051487825&rft_id=info:pmid/&rfr_iscdi=true