Loading…
Detecting outliers in the multivariate control charts for dispersion monitoring
Outlier detection is an important aspect of statistical process monitoring (SPM) because outliers affect the performance of control charts. SPM researchers study the negative impact of outliers on control charts for monitoring location parameters. However, there is little research on outlier detecti...
Saved in:
Published in: | Quality and reliability engineering international 2024-06, Vol.40 (4), p.1904-1917 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2540-2c0405813a9018bb297e65201a50929c17dd479846788f1b82e377b2bc1904783 |
container_end_page | 1917 |
container_issue | 4 |
container_start_page | 1904 |
container_title | Quality and reliability engineering international |
container_volume | 40 |
creator | Ajadi, Jimoh Olawale Raji, Ishaq Adeyanju Abbas, Nasir Riaz, Muhammad |
description | Outlier detection is an important aspect of statistical process monitoring (SPM) because outliers affect the performance of control charts. SPM researchers study the negative impact of outliers on control charts for monitoring location parameters. However, there is little research on outlier detection in multivariate charts for monitoring process dispersion. This study aims to investigate the impact of outliers in multivariate control charts for monitoring covariance matrix of a process, and then to recommend techniques for detecting potential outliers present from Phase I samples. We propose a new multivariate dispersion chart that employs the determinant of logarithm of estimated covariance matrix as the monitoring statistic. Through Monte Carlo simulations, the results show how outliers from the first phase affect the overall performance of multivariate charts. The results also demonstrate that the minimum volume ellipsoid (MVE) estimator is effective in reducing the effect of outliers on the proposed control scheme than the other compared estimators. |
doi_str_mv | 10.1002/qre.3500 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3051487825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051487825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2540-2c0405813a9018bb297e65201a50929c17dd479846788f1b82e377b2bc1904783</originalsourceid><addsrcrecordid>eNp10M1KAzEUhuEgCtYqeAkBN26mnmQmTbKUWn-gUBRdh0wmY1OmkzbJKL17U-vW1dk8fAdehK4JTAgAvdsFOykZwAkaEZCyINNSnKIR8EoUAgg_RxcxrgEylmKElg82WZNc_4n9kDpnQ8Sux2ll8WbokvvSwelksfF9Cr7DZqVDirj1ATcubjN3vscb37vkQ165RGet7qK9-rtj9PE4f589F4vl08vsflEYyiooqIEKmCCllkBEXVPJ7ZRRIJqBpNIQ3jQVl6KaciFaUgtqS85rWhsioeKiHKOb4-42-N1gY1JrP4Q-v1QlMFIJLijL6vaoTPAxBtuqbXAbHfaKgDrkUjmXOuTKtDjSb9fZ_b9Ovb7Nf_0PRXBqkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051487825</pqid></control><display><type>article</type><title>Detecting outliers in the multivariate control charts for dispersion monitoring</title><source>Wiley</source><creator>Ajadi, Jimoh Olawale ; Raji, Ishaq Adeyanju ; Abbas, Nasir ; Riaz, Muhammad</creator><creatorcontrib>Ajadi, Jimoh Olawale ; Raji, Ishaq Adeyanju ; Abbas, Nasir ; Riaz, Muhammad</creatorcontrib><description>Outlier detection is an important aspect of statistical process monitoring (SPM) because outliers affect the performance of control charts. SPM researchers study the negative impact of outliers on control charts for monitoring location parameters. However, there is little research on outlier detection in multivariate charts for monitoring process dispersion. This study aims to investigate the impact of outliers in multivariate control charts for monitoring covariance matrix of a process, and then to recommend techniques for detecting potential outliers present from Phase I samples. We propose a new multivariate dispersion chart that employs the determinant of logarithm of estimated covariance matrix as the monitoring statistic. Through Monte Carlo simulations, the results show how outliers from the first phase affect the overall performance of multivariate charts. The results also demonstrate that the minimum volume ellipsoid (MVE) estimator is effective in reducing the effect of outliers on the proposed control scheme than the other compared estimators.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3500</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Control charts ; Covariance matrix ; Data analysis ; minimum volume ellipsoid ; Monitoring ; Monte Carlo simulation ; Multivariate analysis ; multivariate control chart ; outliers ; Outliers (statistics) ; parameter estimation ; Phase I ; Statistical analysis</subject><ispartof>Quality and reliability engineering international, 2024-06, Vol.40 (4), p.1904-1917</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2540-2c0405813a9018bb297e65201a50929c17dd479846788f1b82e377b2bc1904783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ajadi, Jimoh Olawale</creatorcontrib><creatorcontrib>Raji, Ishaq Adeyanju</creatorcontrib><creatorcontrib>Abbas, Nasir</creatorcontrib><creatorcontrib>Riaz, Muhammad</creatorcontrib><title>Detecting outliers in the multivariate control charts for dispersion monitoring</title><title>Quality and reliability engineering international</title><description>Outlier detection is an important aspect of statistical process monitoring (SPM) because outliers affect the performance of control charts. SPM researchers study the negative impact of outliers on control charts for monitoring location parameters. However, there is little research on outlier detection in multivariate charts for monitoring process dispersion. This study aims to investigate the impact of outliers in multivariate control charts for monitoring covariance matrix of a process, and then to recommend techniques for detecting potential outliers present from Phase I samples. We propose a new multivariate dispersion chart that employs the determinant of logarithm of estimated covariance matrix as the monitoring statistic. Through Monte Carlo simulations, the results show how outliers from the first phase affect the overall performance of multivariate charts. The results also demonstrate that the minimum volume ellipsoid (MVE) estimator is effective in reducing the effect of outliers on the proposed control scheme than the other compared estimators.</description><subject>Control charts</subject><subject>Covariance matrix</subject><subject>Data analysis</subject><subject>minimum volume ellipsoid</subject><subject>Monitoring</subject><subject>Monte Carlo simulation</subject><subject>Multivariate analysis</subject><subject>multivariate control chart</subject><subject>outliers</subject><subject>Outliers (statistics)</subject><subject>parameter estimation</subject><subject>Phase I</subject><subject>Statistical analysis</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUhuEgCtYqeAkBN26mnmQmTbKUWn-gUBRdh0wmY1OmkzbJKL17U-vW1dk8fAdehK4JTAgAvdsFOykZwAkaEZCyINNSnKIR8EoUAgg_RxcxrgEylmKElg82WZNc_4n9kDpnQ8Sux2ll8WbokvvSwelksfF9Cr7DZqVDirj1ATcubjN3vscb37vkQ165RGet7qK9-rtj9PE4f589F4vl08vsflEYyiooqIEKmCCllkBEXVPJ7ZRRIJqBpNIQ3jQVl6KaciFaUgtqS85rWhsioeKiHKOb4-42-N1gY1JrP4Q-v1QlMFIJLijL6vaoTPAxBtuqbXAbHfaKgDrkUjmXOuTKtDjSb9fZ_b9Ovb7Nf_0PRXBqkg</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Ajadi, Jimoh Olawale</creator><creator>Raji, Ishaq Adeyanju</creator><creator>Abbas, Nasir</creator><creator>Riaz, Muhammad</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>202406</creationdate><title>Detecting outliers in the multivariate control charts for dispersion monitoring</title><author>Ajadi, Jimoh Olawale ; Raji, Ishaq Adeyanju ; Abbas, Nasir ; Riaz, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2540-2c0405813a9018bb297e65201a50929c17dd479846788f1b82e377b2bc1904783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control charts</topic><topic>Covariance matrix</topic><topic>Data analysis</topic><topic>minimum volume ellipsoid</topic><topic>Monitoring</topic><topic>Monte Carlo simulation</topic><topic>Multivariate analysis</topic><topic>multivariate control chart</topic><topic>outliers</topic><topic>Outliers (statistics)</topic><topic>parameter estimation</topic><topic>Phase I</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajadi, Jimoh Olawale</creatorcontrib><creatorcontrib>Raji, Ishaq Adeyanju</creatorcontrib><creatorcontrib>Abbas, Nasir</creatorcontrib><creatorcontrib>Riaz, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ajadi, Jimoh Olawale</au><au>Raji, Ishaq Adeyanju</au><au>Abbas, Nasir</au><au>Riaz, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting outliers in the multivariate control charts for dispersion monitoring</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2024-06</date><risdate>2024</risdate><volume>40</volume><issue>4</issue><spage>1904</spage><epage>1917</epage><pages>1904-1917</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>Outlier detection is an important aspect of statistical process monitoring (SPM) because outliers affect the performance of control charts. SPM researchers study the negative impact of outliers on control charts for monitoring location parameters. However, there is little research on outlier detection in multivariate charts for monitoring process dispersion. This study aims to investigate the impact of outliers in multivariate control charts for monitoring covariance matrix of a process, and then to recommend techniques for detecting potential outliers present from Phase I samples. We propose a new multivariate dispersion chart that employs the determinant of logarithm of estimated covariance matrix as the monitoring statistic. Through Monte Carlo simulations, the results show how outliers from the first phase affect the overall performance of multivariate charts. The results also demonstrate that the minimum volume ellipsoid (MVE) estimator is effective in reducing the effect of outliers on the proposed control scheme than the other compared estimators.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.3500</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2024-06, Vol.40 (4), p.1904-1917 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_journals_3051487825 |
source | Wiley |
subjects | Control charts Covariance matrix Data analysis minimum volume ellipsoid Monitoring Monte Carlo simulation Multivariate analysis multivariate control chart outliers Outliers (statistics) parameter estimation Phase I Statistical analysis |
title | Detecting outliers in the multivariate control charts for dispersion monitoring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20outliers%20in%20the%20multivariate%20control%20charts%20for%20dispersion%20monitoring&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Ajadi,%20Jimoh%20Olawale&rft.date=2024-06&rft.volume=40&rft.issue=4&rft.spage=1904&rft.epage=1917&rft.pages=1904-1917&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3500&rft_dat=%3Cproquest_cross%3E3051487825%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2540-2c0405813a9018bb297e65201a50929c17dd479846788f1b82e377b2bc1904783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3051487825&rft_id=info:pmid/&rfr_iscdi=true |