Loading…
Counting Subnetworks Under Gene Duplication in Genetic Regulatory Networks
Gene duplication is a fundamental evolutionary mechanism that contributes to biological complexity and diversity (Fortna et al., 2004). Traditionally, research has focused on the duplication of gene sequences (Zhang, 1914). However, evidence suggests that the duplication of regulatory elements may a...
Saved in:
Published in: | arXiv.org 2024-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Scruse, Ashley Arnold, Jonathan Robinson, Robert |
description | Gene duplication is a fundamental evolutionary mechanism that contributes to biological complexity and diversity (Fortna et al., 2004). Traditionally, research has focused on the duplication of gene sequences (Zhang, 1914). However, evidence suggests that the duplication of regulatory elements may also play a significant role in the evolution of genomic functions (Teichmann and Babu, 2004; Hallin and Landry, 2019). In this work, the evolution of regulatory relationships belonging to gene-specific-substructures in a GRN are modeled. In the model, a network grows from an initial configuration by repeatedly choosing a random gene to duplicate. The likelihood that the regulatory relationships associated with the selected gene are retained through duplication is determined by a vector of probabilities. Occurrences of gene-family-specific substructures are counted under the gene duplication model. In this thesis, gene-family-specific substructures are referred to as subnetwork motifs. These subnetwork motifs are motivated by network motifs which are patterns of interconnections that recur more often in a specialized network than in a random network (Milo et al., 2002). Subnetwork motifs differ from network motifs in the way that subnetwork motifs are instances of gene-family-specific substructures while network motifs are isomorphic substructures. These subnetwork motifs are counted under Full and Partial Duplication, which differ in the way in which regulation relationships are inherited. Full duplication occurs when all regulatory links are inherited at each duplication step, and Partial Duplication occurs when regulation inheritance varies at each duplication step. Moments for the number of occurrences of subnetwork motifs are determined in each model. The results presented offer a method for discovering subnetwork motifs that are significant in a GRN under gene duplication. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3051699561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051699561</sourcerecordid><originalsourceid>FETCH-proquest_journals_30516995613</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwcs4vzSvJzEtXCC5NykstKc8vyi5WCM1LSS1ScE_NS1VwKS3IyUxOLMnMz1PIzAOLlWQmKwSlppfmJJbkF1Uq-EF18TCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvLGBqaGZpaWpmaExcaoA-m49MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051699561</pqid></control><display><type>article</type><title>Counting Subnetworks Under Gene Duplication in Genetic Regulatory Networks</title><source>Access via ProQuest (Open Access)</source><creator>Scruse, Ashley ; Arnold, Jonathan ; Robinson, Robert</creator><creatorcontrib>Scruse, Ashley ; Arnold, Jonathan ; Robinson, Robert</creatorcontrib><description>Gene duplication is a fundamental evolutionary mechanism that contributes to biological complexity and diversity (Fortna et al., 2004). Traditionally, research has focused on the duplication of gene sequences (Zhang, 1914). However, evidence suggests that the duplication of regulatory elements may also play a significant role in the evolution of genomic functions (Teichmann and Babu, 2004; Hallin and Landry, 2019). In this work, the evolution of regulatory relationships belonging to gene-specific-substructures in a GRN are modeled. In the model, a network grows from an initial configuration by repeatedly choosing a random gene to duplicate. The likelihood that the regulatory relationships associated with the selected gene are retained through duplication is determined by a vector of probabilities. Occurrences of gene-family-specific substructures are counted under the gene duplication model. In this thesis, gene-family-specific substructures are referred to as subnetwork motifs. These subnetwork motifs are motivated by network motifs which are patterns of interconnections that recur more often in a specialized network than in a random network (Milo et al., 2002). Subnetwork motifs differ from network motifs in the way that subnetwork motifs are instances of gene-family-specific substructures while network motifs are isomorphic substructures. These subnetwork motifs are counted under Full and Partial Duplication, which differ in the way in which regulation relationships are inherited. Full duplication occurs when all regulatory links are inherited at each duplication step, and Partial Duplication occurs when regulation inheritance varies at each duplication step. Moments for the number of occurrences of subnetwork motifs are determined in each model. The results presented offer a method for discovering subnetwork motifs that are significant in a GRN under gene duplication.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Evolution ; Gene sequencing ; Regulation</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3051699561?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Scruse, Ashley</creatorcontrib><creatorcontrib>Arnold, Jonathan</creatorcontrib><creatorcontrib>Robinson, Robert</creatorcontrib><title>Counting Subnetworks Under Gene Duplication in Genetic Regulatory Networks</title><title>arXiv.org</title><description>Gene duplication is a fundamental evolutionary mechanism that contributes to biological complexity and diversity (Fortna et al., 2004). Traditionally, research has focused on the duplication of gene sequences (Zhang, 1914). However, evidence suggests that the duplication of regulatory elements may also play a significant role in the evolution of genomic functions (Teichmann and Babu, 2004; Hallin and Landry, 2019). In this work, the evolution of regulatory relationships belonging to gene-specific-substructures in a GRN are modeled. In the model, a network grows from an initial configuration by repeatedly choosing a random gene to duplicate. The likelihood that the regulatory relationships associated with the selected gene are retained through duplication is determined by a vector of probabilities. Occurrences of gene-family-specific substructures are counted under the gene duplication model. In this thesis, gene-family-specific substructures are referred to as subnetwork motifs. These subnetwork motifs are motivated by network motifs which are patterns of interconnections that recur more often in a specialized network than in a random network (Milo et al., 2002). Subnetwork motifs differ from network motifs in the way that subnetwork motifs are instances of gene-family-specific substructures while network motifs are isomorphic substructures. These subnetwork motifs are counted under Full and Partial Duplication, which differ in the way in which regulation relationships are inherited. Full duplication occurs when all regulatory links are inherited at each duplication step, and Partial Duplication occurs when regulation inheritance varies at each duplication step. Moments for the number of occurrences of subnetwork motifs are determined in each model. The results presented offer a method for discovering subnetwork motifs that are significant in a GRN under gene duplication.</description><subject>Evolution</subject><subject>Gene sequencing</subject><subject>Regulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwcs4vzSvJzEtXCC5NykstKc8vyi5WCM1LSS1ScE_NS1VwKS3IyUxOLMnMz1PIzAOLlWQmKwSlppfmJJbkF1Uq-EF18TCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvLGBqaGZpaWpmaExcaoA-m49MQ</recordid><startdate>20240506</startdate><enddate>20240506</enddate><creator>Scruse, Ashley</creator><creator>Arnold, Jonathan</creator><creator>Robinson, Robert</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240506</creationdate><title>Counting Subnetworks Under Gene Duplication in Genetic Regulatory Networks</title><author>Scruse, Ashley ; Arnold, Jonathan ; Robinson, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30516995613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Evolution</topic><topic>Gene sequencing</topic><topic>Regulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Scruse, Ashley</creatorcontrib><creatorcontrib>Arnold, Jonathan</creatorcontrib><creatorcontrib>Robinson, Robert</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scruse, Ashley</au><au>Arnold, Jonathan</au><au>Robinson, Robert</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Counting Subnetworks Under Gene Duplication in Genetic Regulatory Networks</atitle><jtitle>arXiv.org</jtitle><date>2024-05-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Gene duplication is a fundamental evolutionary mechanism that contributes to biological complexity and diversity (Fortna et al., 2004). Traditionally, research has focused on the duplication of gene sequences (Zhang, 1914). However, evidence suggests that the duplication of regulatory elements may also play a significant role in the evolution of genomic functions (Teichmann and Babu, 2004; Hallin and Landry, 2019). In this work, the evolution of regulatory relationships belonging to gene-specific-substructures in a GRN are modeled. In the model, a network grows from an initial configuration by repeatedly choosing a random gene to duplicate. The likelihood that the regulatory relationships associated with the selected gene are retained through duplication is determined by a vector of probabilities. Occurrences of gene-family-specific substructures are counted under the gene duplication model. In this thesis, gene-family-specific substructures are referred to as subnetwork motifs. These subnetwork motifs are motivated by network motifs which are patterns of interconnections that recur more often in a specialized network than in a random network (Milo et al., 2002). Subnetwork motifs differ from network motifs in the way that subnetwork motifs are instances of gene-family-specific substructures while network motifs are isomorphic substructures. These subnetwork motifs are counted under Full and Partial Duplication, which differ in the way in which regulation relationships are inherited. Full duplication occurs when all regulatory links are inherited at each duplication step, and Partial Duplication occurs when regulation inheritance varies at each duplication step. Moments for the number of occurrences of subnetwork motifs are determined in each model. The results presented offer a method for discovering subnetwork motifs that are significant in a GRN under gene duplication.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3051699561 |
source | Access via ProQuest (Open Access) |
subjects | Evolution Gene sequencing Regulation |
title | Counting Subnetworks Under Gene Duplication in Genetic Regulatory Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Counting%20Subnetworks%20Under%20Gene%20Duplication%20in%20Genetic%20Regulatory%20Networks&rft.jtitle=arXiv.org&rft.au=Scruse,%20Ashley&rft.date=2024-05-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3051699561%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30516995613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3051699561&rft_id=info:pmid/&rfr_iscdi=true |