Loading…
Upside–Down Annealing of Oxide Thin‐Film Transistors and its Analysis Using Hydrogen‐Diffusion Model
Hydrogen plays a crucial role in controlling the electrical characteristics of oxide thin‐film transistors (TFTs). The conductivity of the semiconductor can be modulated by controlling the amount of hydrogen in the active layer. In this study, a thermal annealing of the sample in an inverted orienta...
Saved in:
Published in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2024-05, Vol.221 (9), p.n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2724-39344b9ed1a19c8dd8ccc40a85f5768822544d558756799676492ec4905042fb3 |
container_end_page | n/a |
container_issue | 9 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 221 |
creator | Park, SeongJin Kim, Kang Park, Sang‐Hee Ko |
description | Hydrogen plays a crucial role in controlling the electrical characteristics of oxide thin‐film transistors (TFTs). The conductivity of the semiconductor can be modulated by controlling the amount of hydrogen in the active layer. In this study, a thermal annealing of the sample in an inverted orientation (referred to as “upside‐down annealing”) is introduced. The impact of this approach on the hydrogen content within the In2O3 active layer is examined through the lens of a hydrogen diffusion model. By time‐of‐flight secondary ion mass spectrometry analysis, a hydrogen diffusion model for the TFT is established, and it is demonstrated that upside–down annealing is an effective method for preventing hydrogen depletion caused by out‐diffusion. A bottom‐gate bottom‐contact TFT is fabricated to analyze electrical characteristics. By employing different post‐thermal annealing methods on the device, it is discovered that the upside–down annealing enhances the device's performance significantly up to mobility of 22.3 cm2 V−1 s−1, which surpasses more than twice the mobility achieved with the traditionally oriented, “straight” annealed TFT.
In this study, a thermal annealing method of oxide thin‐film transistors in an inverted orientation, called “upside‐down annealing,” is introduced. Upside–down annealing prevents hydrogen out‐diffusion from the In2O3 active layer and enhances mobility. The hydrogen content in the In2O3 active layer is examined through the lens of a hydrogen‐diffusion model. |
doi_str_mv | 10.1002/pssa.202300904 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3052209458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3052209458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2724-39344b9ed1a19c8dd8ccc40a85f5768822544d558756799676492ec4905042fb3</originalsourceid><addsrcrecordid>eNqFkEFPwjAUxxejiYhePTfxPHzt2m09EhAxwWACnJuydlgy1tlCcDc-gonfkE_iFgwePb2X9_6_l5dfENxj6GEA8lh5L3sESATAgV4EHZzGJIwjzC_PPcB1cOP9GoAymuBOsF5U3ih9PHwP7b5E_bLUsjDlCtkcTT-bDZq_m_J4-BqZYoPmTpbe-K11HslSIbP1DSKLuhmihW-5ca2cXekWGZo833ljS_RqlS5ug6tcFl7f_dZusBg9zQfjcDJ9fhn0J2FGEkLDiEeULrlWWGKepUqlWZZRkCnLWRKnKSGMUsVYmrA44TxOYsqJzigHBpTky6gbPJzuVs5-7LTfirXdueZLLyJghACnLG1SvVMqc9Z7p3NRObORrhYYROtTtD7F2WcD8BOwN4Wu_0mLt9ms_8f-ABYHfB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052209458</pqid></control><display><type>article</type><title>Upside–Down Annealing of Oxide Thin‐Film Transistors and its Analysis Using Hydrogen‐Diffusion Model</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Park, SeongJin ; Kim, Kang ; Park, Sang‐Hee Ko</creator><creatorcontrib>Park, SeongJin ; Kim, Kang ; Park, Sang‐Hee Ko</creatorcontrib><description>Hydrogen plays a crucial role in controlling the electrical characteristics of oxide thin‐film transistors (TFTs). The conductivity of the semiconductor can be modulated by controlling the amount of hydrogen in the active layer. In this study, a thermal annealing of the sample in an inverted orientation (referred to as “upside‐down annealing”) is introduced. The impact of this approach on the hydrogen content within the In2O3 active layer is examined through the lens of a hydrogen diffusion model. By time‐of‐flight secondary ion mass spectrometry analysis, a hydrogen diffusion model for the TFT is established, and it is demonstrated that upside–down annealing is an effective method for preventing hydrogen depletion caused by out‐diffusion. A bottom‐gate bottom‐contact TFT is fabricated to analyze electrical characteristics. By employing different post‐thermal annealing methods on the device, it is discovered that the upside–down annealing enhances the device's performance significantly up to mobility of 22.3 cm2 V−1 s−1, which surpasses more than twice the mobility achieved with the traditionally oriented, “straight” annealed TFT.
In this study, a thermal annealing method of oxide thin‐film transistors in an inverted orientation, called “upside‐down annealing,” is introduced. Upside–down annealing prevents hydrogen out‐diffusion from the In2O3 active layer and enhances mobility. The hydrogen content in the In2O3 active layer is examined through the lens of a hydrogen‐diffusion model.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202300904</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Annealing ; Diffusion layers ; Electric contacts ; Hydrogen ; hydrogen diffusions ; Indium oxides ; interface trap sites ; oxide thin film transistors ; secondary ion mass spectrometries, vacuum annealings ; Secondary ion mass spectrometry ; Semiconductor devices ; Thin film transistors ; Transistors</subject><ispartof>Physica status solidi. A, Applications and materials science, 2024-05, Vol.221 (9), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2724-39344b9ed1a19c8dd8ccc40a85f5768822544d558756799676492ec4905042fb3</cites><orcidid>0000-0001-7165-8211 ; 0009-0007-1378-4202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Park, SeongJin</creatorcontrib><creatorcontrib>Kim, Kang</creatorcontrib><creatorcontrib>Park, Sang‐Hee Ko</creatorcontrib><title>Upside–Down Annealing of Oxide Thin‐Film Transistors and its Analysis Using Hydrogen‐Diffusion Model</title><title>Physica status solidi. A, Applications and materials science</title><description>Hydrogen plays a crucial role in controlling the electrical characteristics of oxide thin‐film transistors (TFTs). The conductivity of the semiconductor can be modulated by controlling the amount of hydrogen in the active layer. In this study, a thermal annealing of the sample in an inverted orientation (referred to as “upside‐down annealing”) is introduced. The impact of this approach on the hydrogen content within the In2O3 active layer is examined through the lens of a hydrogen diffusion model. By time‐of‐flight secondary ion mass spectrometry analysis, a hydrogen diffusion model for the TFT is established, and it is demonstrated that upside–down annealing is an effective method for preventing hydrogen depletion caused by out‐diffusion. A bottom‐gate bottom‐contact TFT is fabricated to analyze electrical characteristics. By employing different post‐thermal annealing methods on the device, it is discovered that the upside–down annealing enhances the device's performance significantly up to mobility of 22.3 cm2 V−1 s−1, which surpasses more than twice the mobility achieved with the traditionally oriented, “straight” annealed TFT.
In this study, a thermal annealing method of oxide thin‐film transistors in an inverted orientation, called “upside‐down annealing,” is introduced. Upside–down annealing prevents hydrogen out‐diffusion from the In2O3 active layer and enhances mobility. The hydrogen content in the In2O3 active layer is examined through the lens of a hydrogen‐diffusion model.</description><subject>Annealing</subject><subject>Diffusion layers</subject><subject>Electric contacts</subject><subject>Hydrogen</subject><subject>hydrogen diffusions</subject><subject>Indium oxides</subject><subject>interface trap sites</subject><subject>oxide thin film transistors</subject><subject>secondary ion mass spectrometries, vacuum annealings</subject><subject>Secondary ion mass spectrometry</subject><subject>Semiconductor devices</subject><subject>Thin film transistors</subject><subject>Transistors</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwjAUxxejiYhePTfxPHzt2m09EhAxwWACnJuydlgy1tlCcDc-gonfkE_iFgwePb2X9_6_l5dfENxj6GEA8lh5L3sESATAgV4EHZzGJIwjzC_PPcB1cOP9GoAymuBOsF5U3ih9PHwP7b5E_bLUsjDlCtkcTT-bDZq_m_J4-BqZYoPmTpbe-K11HslSIbP1DSKLuhmihW-5ca2cXekWGZo833ljS_RqlS5ug6tcFl7f_dZusBg9zQfjcDJ9fhn0J2FGEkLDiEeULrlWWGKepUqlWZZRkCnLWRKnKSGMUsVYmrA44TxOYsqJzigHBpTky6gbPJzuVs5-7LTfirXdueZLLyJghACnLG1SvVMqc9Z7p3NRObORrhYYROtTtD7F2WcD8BOwN4Wu_0mLt9ms_8f-ABYHfB0</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Park, SeongJin</creator><creator>Kim, Kang</creator><creator>Park, Sang‐Hee Ko</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7165-8211</orcidid><orcidid>https://orcid.org/0009-0007-1378-4202</orcidid></search><sort><creationdate>202405</creationdate><title>Upside–Down Annealing of Oxide Thin‐Film Transistors and its Analysis Using Hydrogen‐Diffusion Model</title><author>Park, SeongJin ; Kim, Kang ; Park, Sang‐Hee Ko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2724-39344b9ed1a19c8dd8ccc40a85f5768822544d558756799676492ec4905042fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annealing</topic><topic>Diffusion layers</topic><topic>Electric contacts</topic><topic>Hydrogen</topic><topic>hydrogen diffusions</topic><topic>Indium oxides</topic><topic>interface trap sites</topic><topic>oxide thin film transistors</topic><topic>secondary ion mass spectrometries, vacuum annealings</topic><topic>Secondary ion mass spectrometry</topic><topic>Semiconductor devices</topic><topic>Thin film transistors</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, SeongJin</creatorcontrib><creatorcontrib>Kim, Kang</creatorcontrib><creatorcontrib>Park, Sang‐Hee Ko</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, SeongJin</au><au>Kim, Kang</au><au>Park, Sang‐Hee Ko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upside–Down Annealing of Oxide Thin‐Film Transistors and its Analysis Using Hydrogen‐Diffusion Model</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-05</date><risdate>2024</risdate><volume>221</volume><issue>9</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Hydrogen plays a crucial role in controlling the electrical characteristics of oxide thin‐film transistors (TFTs). The conductivity of the semiconductor can be modulated by controlling the amount of hydrogen in the active layer. In this study, a thermal annealing of the sample in an inverted orientation (referred to as “upside‐down annealing”) is introduced. The impact of this approach on the hydrogen content within the In2O3 active layer is examined through the lens of a hydrogen diffusion model. By time‐of‐flight secondary ion mass spectrometry analysis, a hydrogen diffusion model for the TFT is established, and it is demonstrated that upside–down annealing is an effective method for preventing hydrogen depletion caused by out‐diffusion. A bottom‐gate bottom‐contact TFT is fabricated to analyze electrical characteristics. By employing different post‐thermal annealing methods on the device, it is discovered that the upside–down annealing enhances the device's performance significantly up to mobility of 22.3 cm2 V−1 s−1, which surpasses more than twice the mobility achieved with the traditionally oriented, “straight” annealed TFT.
In this study, a thermal annealing method of oxide thin‐film transistors in an inverted orientation, called “upside‐down annealing,” is introduced. Upside–down annealing prevents hydrogen out‐diffusion from the In2O3 active layer and enhances mobility. The hydrogen content in the In2O3 active layer is examined through the lens of a hydrogen‐diffusion model.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202300904</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7165-8211</orcidid><orcidid>https://orcid.org/0009-0007-1378-4202</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2024-05, Vol.221 (9), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_3052209458 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Annealing Diffusion layers Electric contacts Hydrogen hydrogen diffusions Indium oxides interface trap sites oxide thin film transistors secondary ion mass spectrometries, vacuum annealings Secondary ion mass spectrometry Semiconductor devices Thin film transistors Transistors |
title | Upside–Down Annealing of Oxide Thin‐Film Transistors and its Analysis Using Hydrogen‐Diffusion Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upside%E2%80%93Down%20Annealing%20of%20Oxide%20Thin%E2%80%90Film%20Transistors%20and%20its%20Analysis%20Using%20Hydrogen%E2%80%90Diffusion%20Model&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Park,%20SeongJin&rft.date=2024-05&rft.volume=221&rft.issue=9&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202300904&rft_dat=%3Cproquest_cross%3E3052209458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2724-39344b9ed1a19c8dd8ccc40a85f5768822544d558756799676492ec4905042fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3052209458&rft_id=info:pmid/&rfr_iscdi=true |