Loading…
Design and Performance of 30/40 GHz Diplexed Focal Plane for BICEP Array
We demonstrate a wide-band diplexed focal plane suitable for observing low-frequency foregrounds that are important for cosmic microwave background polarimetry. The antenna elements are composed of slotted bowtie antennas with 60% bandwidth that can be partitioned into two bands. Each pixel is compo...
Saved in:
Published in: | arXiv.org 2024-05 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate a wide-band diplexed focal plane suitable for observing low-frequency foregrounds that are important for cosmic microwave background polarimetry. The antenna elements are composed of slotted bowtie antennas with 60% bandwidth that can be partitioned into two bands. Each pixel is composed of two interleaved 12\(\times\)12 pairs of linearly polarized antenna elements forming a phased array, designed to synthesize a symmetric beam with no need for focusing optics. The signal from each antenna element is captured in-phase and uniformly weighted by a microstrip summing tree. The antenna signal is diplexed into two bands through the use of two complementary, six-pole Butterworth filters. This filter architecture ensures a contiguous impedance match at all frequencies, and thereby achieves minimal reflection loss between both bands. Subsequently, out-of-band rejection is increased with a bandpass filter and the signal is then deposited on a transition-edge sensor bolometer island. We demonstrate the performance of this focal plane with two distinct bands, 30 and 40 GHz, each with a bandwidth of \(\sim\)20 and 15 GHz, respectively. The unequal bandwidths between the two bands are caused by an unintentional shift in diplexer frequency from its design values. The end-to-end optical efficiency of these detectors are relatively modest, at 20-30%, with an efficiency loss due to an unknown impedance mismatch in the summing tree. Far-field beam maps show good optical characteristics with edge pixels having no more than \(\sim\) 5% ellipticity and \(\sim\)10-15% peak-to-peak differences for A-B polarization pairs. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2405.03767 |