Loading…

Continual Monitoring of Respiratory Disorders to Enhance Therapy via Real-Time Lung Sound Imaging in Telemedicine

This work presents a configurable Internet of Things architecture for acoustical sensing and analysis for frequent remote respiratory assessments. The proposed system creates a foundation for enabling real-time therapy and patient feedback adjustment in a telemedicine setting. By allowing continuous...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2024-05, Vol.13 (9), p.1669
Main Authors: Muhammad, Murdifi, Li, Minghui, Lou, Yaolong, Lee, Chang-Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c339t-af6553b347ebbd0275b3525a2d4972d6d3bc2520b9d94e4e666e62eaaae2dfcb3
container_end_page
container_issue 9
container_start_page 1669
container_title Electronics (Basel)
container_volume 13
creator Muhammad, Murdifi
Li, Minghui
Lou, Yaolong
Lee, Chang-Sheng
description This work presents a configurable Internet of Things architecture for acoustical sensing and analysis for frequent remote respiratory assessments. The proposed system creates a foundation for enabling real-time therapy and patient feedback adjustment in a telemedicine setting. By allowing continuous remote respiratory monitoring, the system has the potential to give clinicians access to assessments from which they could make decisions about modifying therapy in real-time and communicate changes directly to patients. The system comprises a wearable wireless microphone array interfaced with a programmable microcontroller with embedded signal conditioning. Experiments on the phantom model were conducted to demonstrate the feasibility of reconstructing acoustic lung images for detecting obstructions in the airway and provided controlled validation of noise resilience and imaging capabilities. An optimized denoising technique and design innovations provided 7 dB more SNR and 7% more imaging accuracy for the proposed system, benchmarked against digital stethoscopes. While further clinical studies are warranted, initial results suggest potential benefits over single-point digital stethoscopes for internet-enabled remote lung monitoring needing noise immunity and regional specificity. The flexible architecture aims to bridge critical technical gaps in frequent and connected respiratory function at home or in busy clinical settings challenged by ambient noise interference.
doi_str_mv 10.3390/electronics13091669
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3053154297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793567468</galeid><sourcerecordid>A793567468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-af6553b347ebbd0275b3525a2d4972d6d3bc2520b9d94e4e666e62eaaae2dfcb3</originalsourceid><addsrcrecordid>eNptUVFLwzAQLqLg0P0CXwI-d6ZJky6PY04dTAStzyVNrltGm2xJK-zfmzFBhd093PHxfd_dcUlyl-EJpQI_QAuq984aFTKKRca5uEhGBBciFUSQyz_9dTIOYYtjiIxOKR4l-7mzvbGDbNFrtOidN3aNXIPeIeyMlxE4oEcTnNfgA-odWtiNtApQuQEvdwf0ZWQkyzYtTQdoNUT5hxusRstOro9mxqIy7tiBNspYuE2uGtkGGP_Um-TzaVHOX9LV2_NyPlulKl7Vp7LhjNGa5gXUtcakYDVlhEmic1EQzTWtFWEE10KLHHLgnAMnIKUEohtV05vk_uS7824_QOirrRu8jSMrihnNWE5E8ctayxYqYxvXe6k6E1Q1KwRlvMj5NLImZ1gxNXRGOQuNifg_AT0JlHcheGiqnTed9Icqw9Xxa9WZr9Fv1maN8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053154297</pqid></control><display><type>article</type><title>Continual Monitoring of Respiratory Disorders to Enhance Therapy via Real-Time Lung Sound Imaging in Telemedicine</title><source>Publicly Available Content (ProQuest)</source><creator>Muhammad, Murdifi ; Li, Minghui ; Lou, Yaolong ; Lee, Chang-Sheng</creator><creatorcontrib>Muhammad, Murdifi ; Li, Minghui ; Lou, Yaolong ; Lee, Chang-Sheng</creatorcontrib><description>This work presents a configurable Internet of Things architecture for acoustical sensing and analysis for frequent remote respiratory assessments. The proposed system creates a foundation for enabling real-time therapy and patient feedback adjustment in a telemedicine setting. By allowing continuous remote respiratory monitoring, the system has the potential to give clinicians access to assessments from which they could make decisions about modifying therapy in real-time and communicate changes directly to patients. The system comprises a wearable wireless microphone array interfaced with a programmable microcontroller with embedded signal conditioning. Experiments on the phantom model were conducted to demonstrate the feasibility of reconstructing acoustic lung images for detecting obstructions in the airway and provided controlled validation of noise resilience and imaging capabilities. An optimized denoising technique and design innovations provided 7 dB more SNR and 7% more imaging accuracy for the proposed system, benchmarked against digital stethoscopes. While further clinical studies are warranted, initial results suggest potential benefits over single-point digital stethoscopes for internet-enabled remote lung monitoring needing noise immunity and regional specificity. The flexible architecture aims to bridge critical technical gaps in frequent and connected respiratory function at home or in busy clinical settings challenged by ambient noise interference.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13091669</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Acoustic properties ; Acoustics ; Airway management ; Assessments ; Asthma ; Biometrics ; Chronic obstructive pulmonary disease ; Computer architecture ; Design optimization ; Digital imaging ; Image reconstruction ; Internet of Things ; Lung diseases ; Lungs ; Medical research ; Medicine, Experimental ; Microelectromechanical systems ; Microphones ; Monitoring systems ; Noise monitoring ; Obstructions ; Patient compliance ; Patients ; Real time ; Remote monitoring ; Remote sensing ; Respiration ; Respiratory diseases ; Sensors ; Sound ; Stethoscopes ; Telemedicine ; Therapy</subject><ispartof>Electronics (Basel), 2024-05, Vol.13 (9), p.1669</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c339t-af6553b347ebbd0275b3525a2d4972d6d3bc2520b9d94e4e666e62eaaae2dfcb3</cites><orcidid>0000-0003-0481-7942 ; 0000-0002-8151-3101 ; 0000-0002-4482-2271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3053154297/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3053154297?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Muhammad, Murdifi</creatorcontrib><creatorcontrib>Li, Minghui</creatorcontrib><creatorcontrib>Lou, Yaolong</creatorcontrib><creatorcontrib>Lee, Chang-Sheng</creatorcontrib><title>Continual Monitoring of Respiratory Disorders to Enhance Therapy via Real-Time Lung Sound Imaging in Telemedicine</title><title>Electronics (Basel)</title><description>This work presents a configurable Internet of Things architecture for acoustical sensing and analysis for frequent remote respiratory assessments. The proposed system creates a foundation for enabling real-time therapy and patient feedback adjustment in a telemedicine setting. By allowing continuous remote respiratory monitoring, the system has the potential to give clinicians access to assessments from which they could make decisions about modifying therapy in real-time and communicate changes directly to patients. The system comprises a wearable wireless microphone array interfaced with a programmable microcontroller with embedded signal conditioning. Experiments on the phantom model were conducted to demonstrate the feasibility of reconstructing acoustic lung images for detecting obstructions in the airway and provided controlled validation of noise resilience and imaging capabilities. An optimized denoising technique and design innovations provided 7 dB more SNR and 7% more imaging accuracy for the proposed system, benchmarked against digital stethoscopes. While further clinical studies are warranted, initial results suggest potential benefits over single-point digital stethoscopes for internet-enabled remote lung monitoring needing noise immunity and regional specificity. The flexible architecture aims to bridge critical technical gaps in frequent and connected respiratory function at home or in busy clinical settings challenged by ambient noise interference.</description><subject>Accuracy</subject><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Airway management</subject><subject>Assessments</subject><subject>Asthma</subject><subject>Biometrics</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Computer architecture</subject><subject>Design optimization</subject><subject>Digital imaging</subject><subject>Image reconstruction</subject><subject>Internet of Things</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Microelectromechanical systems</subject><subject>Microphones</subject><subject>Monitoring systems</subject><subject>Noise monitoring</subject><subject>Obstructions</subject><subject>Patient compliance</subject><subject>Patients</subject><subject>Real time</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Respiration</subject><subject>Respiratory diseases</subject><subject>Sensors</subject><subject>Sound</subject><subject>Stethoscopes</subject><subject>Telemedicine</subject><subject>Therapy</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUVFLwzAQLqLg0P0CXwI-d6ZJky6PY04dTAStzyVNrltGm2xJK-zfmzFBhd093PHxfd_dcUlyl-EJpQI_QAuq984aFTKKRca5uEhGBBciFUSQyz_9dTIOYYtjiIxOKR4l-7mzvbGDbNFrtOidN3aNXIPeIeyMlxE4oEcTnNfgA-odWtiNtApQuQEvdwf0ZWQkyzYtTQdoNUT5hxusRstOro9mxqIy7tiBNspYuE2uGtkGGP_Um-TzaVHOX9LV2_NyPlulKl7Vp7LhjNGa5gXUtcakYDVlhEmic1EQzTWtFWEE10KLHHLgnAMnIKUEohtV05vk_uS7824_QOirrRu8jSMrihnNWE5E8ctayxYqYxvXe6k6E1Q1KwRlvMj5NLImZ1gxNXRGOQuNifg_AT0JlHcheGiqnTed9Icqw9Xxa9WZr9Fv1maN8w</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Muhammad, Murdifi</creator><creator>Li, Minghui</creator><creator>Lou, Yaolong</creator><creator>Lee, Chang-Sheng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0481-7942</orcidid><orcidid>https://orcid.org/0000-0002-8151-3101</orcidid><orcidid>https://orcid.org/0000-0002-4482-2271</orcidid></search><sort><creationdate>20240501</creationdate><title>Continual Monitoring of Respiratory Disorders to Enhance Therapy via Real-Time Lung Sound Imaging in Telemedicine</title><author>Muhammad, Murdifi ; Li, Minghui ; Lou, Yaolong ; Lee, Chang-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-af6553b347ebbd0275b3525a2d4972d6d3bc2520b9d94e4e666e62eaaae2dfcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Airway management</topic><topic>Assessments</topic><topic>Asthma</topic><topic>Biometrics</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Computer architecture</topic><topic>Design optimization</topic><topic>Digital imaging</topic><topic>Image reconstruction</topic><topic>Internet of Things</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Microelectromechanical systems</topic><topic>Microphones</topic><topic>Monitoring systems</topic><topic>Noise monitoring</topic><topic>Obstructions</topic><topic>Patient compliance</topic><topic>Patients</topic><topic>Real time</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Respiration</topic><topic>Respiratory diseases</topic><topic>Sensors</topic><topic>Sound</topic><topic>Stethoscopes</topic><topic>Telemedicine</topic><topic>Therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhammad, Murdifi</creatorcontrib><creatorcontrib>Li, Minghui</creatorcontrib><creatorcontrib>Lou, Yaolong</creatorcontrib><creatorcontrib>Lee, Chang-Sheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhammad, Murdifi</au><au>Li, Minghui</au><au>Lou, Yaolong</au><au>Lee, Chang-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continual Monitoring of Respiratory Disorders to Enhance Therapy via Real-Time Lung Sound Imaging in Telemedicine</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>13</volume><issue>9</issue><spage>1669</spage><pages>1669-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This work presents a configurable Internet of Things architecture for acoustical sensing and analysis for frequent remote respiratory assessments. The proposed system creates a foundation for enabling real-time therapy and patient feedback adjustment in a telemedicine setting. By allowing continuous remote respiratory monitoring, the system has the potential to give clinicians access to assessments from which they could make decisions about modifying therapy in real-time and communicate changes directly to patients. The system comprises a wearable wireless microphone array interfaced with a programmable microcontroller with embedded signal conditioning. Experiments on the phantom model were conducted to demonstrate the feasibility of reconstructing acoustic lung images for detecting obstructions in the airway and provided controlled validation of noise resilience and imaging capabilities. An optimized denoising technique and design innovations provided 7 dB more SNR and 7% more imaging accuracy for the proposed system, benchmarked against digital stethoscopes. While further clinical studies are warranted, initial results suggest potential benefits over single-point digital stethoscopes for internet-enabled remote lung monitoring needing noise immunity and regional specificity. The flexible architecture aims to bridge critical technical gaps in frequent and connected respiratory function at home or in busy clinical settings challenged by ambient noise interference.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13091669</doi><orcidid>https://orcid.org/0000-0003-0481-7942</orcidid><orcidid>https://orcid.org/0000-0002-8151-3101</orcidid><orcidid>https://orcid.org/0000-0002-4482-2271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-05, Vol.13 (9), p.1669
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3053154297
source Publicly Available Content (ProQuest)
subjects Accuracy
Acoustic properties
Acoustics
Airway management
Assessments
Asthma
Biometrics
Chronic obstructive pulmonary disease
Computer architecture
Design optimization
Digital imaging
Image reconstruction
Internet of Things
Lung diseases
Lungs
Medical research
Medicine, Experimental
Microelectromechanical systems
Microphones
Monitoring systems
Noise monitoring
Obstructions
Patient compliance
Patients
Real time
Remote monitoring
Remote sensing
Respiration
Respiratory diseases
Sensors
Sound
Stethoscopes
Telemedicine
Therapy
title Continual Monitoring of Respiratory Disorders to Enhance Therapy via Real-Time Lung Sound Imaging in Telemedicine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continual%20Monitoring%20of%20Respiratory%20Disorders%20to%20Enhance%20Therapy%20via%20Real-Time%20Lung%20Sound%20Imaging%20in%20Telemedicine&rft.jtitle=Electronics%20(Basel)&rft.au=Muhammad,%20Murdifi&rft.date=2024-05-01&rft.volume=13&rft.issue=9&rft.spage=1669&rft.pages=1669-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13091669&rft_dat=%3Cgale_proqu%3EA793567468%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-af6553b347ebbd0275b3525a2d4972d6d3bc2520b9d94e4e666e62eaaae2dfcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053154297&rft_id=info:pmid/&rft_galeid=A793567468&rfr_iscdi=true