Loading…
Continual Monitoring of Respiratory Disorders to Enhance Therapy via Real-Time Lung Sound Imaging in Telemedicine
This work presents a configurable Internet of Things architecture for acoustical sensing and analysis for frequent remote respiratory assessments. The proposed system creates a foundation for enabling real-time therapy and patient feedback adjustment in a telemedicine setting. By allowing continuous...
Saved in:
Published in: | Electronics (Basel) 2024-05, Vol.13 (9), p.1669 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-af6553b347ebbd0275b3525a2d4972d6d3bc2520b9d94e4e666e62eaaae2dfcb3 |
container_end_page | |
container_issue | 9 |
container_start_page | 1669 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Muhammad, Murdifi Li, Minghui Lou, Yaolong Lee, Chang-Sheng |
description | This work presents a configurable Internet of Things architecture for acoustical sensing and analysis for frequent remote respiratory assessments. The proposed system creates a foundation for enabling real-time therapy and patient feedback adjustment in a telemedicine setting. By allowing continuous remote respiratory monitoring, the system has the potential to give clinicians access to assessments from which they could make decisions about modifying therapy in real-time and communicate changes directly to patients. The system comprises a wearable wireless microphone array interfaced with a programmable microcontroller with embedded signal conditioning. Experiments on the phantom model were conducted to demonstrate the feasibility of reconstructing acoustic lung images for detecting obstructions in the airway and provided controlled validation of noise resilience and imaging capabilities. An optimized denoising technique and design innovations provided 7 dB more SNR and 7% more imaging accuracy for the proposed system, benchmarked against digital stethoscopes. While further clinical studies are warranted, initial results suggest potential benefits over single-point digital stethoscopes for internet-enabled remote lung monitoring needing noise immunity and regional specificity. The flexible architecture aims to bridge critical technical gaps in frequent and connected respiratory function at home or in busy clinical settings challenged by ambient noise interference. |
doi_str_mv | 10.3390/electronics13091669 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3053154297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793567468</galeid><sourcerecordid>A793567468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-af6553b347ebbd0275b3525a2d4972d6d3bc2520b9d94e4e666e62eaaae2dfcb3</originalsourceid><addsrcrecordid>eNptUVFLwzAQLqLg0P0CXwI-d6ZJky6PY04dTAStzyVNrltGm2xJK-zfmzFBhd093PHxfd_dcUlyl-EJpQI_QAuq984aFTKKRca5uEhGBBciFUSQyz_9dTIOYYtjiIxOKR4l-7mzvbGDbNFrtOidN3aNXIPeIeyMlxE4oEcTnNfgA-odWtiNtApQuQEvdwf0ZWQkyzYtTQdoNUT5hxusRstOro9mxqIy7tiBNspYuE2uGtkGGP_Um-TzaVHOX9LV2_NyPlulKl7Vp7LhjNGa5gXUtcakYDVlhEmic1EQzTWtFWEE10KLHHLgnAMnIKUEohtV05vk_uS7824_QOirrRu8jSMrihnNWE5E8ctayxYqYxvXe6k6E1Q1KwRlvMj5NLImZ1gxNXRGOQuNifg_AT0JlHcheGiqnTed9Icqw9Xxa9WZr9Fv1maN8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053154297</pqid></control><display><type>article</type><title>Continual Monitoring of Respiratory Disorders to Enhance Therapy via Real-Time Lung Sound Imaging in Telemedicine</title><source>Publicly Available Content (ProQuest)</source><creator>Muhammad, Murdifi ; Li, Minghui ; Lou, Yaolong ; Lee, Chang-Sheng</creator><creatorcontrib>Muhammad, Murdifi ; Li, Minghui ; Lou, Yaolong ; Lee, Chang-Sheng</creatorcontrib><description>This work presents a configurable Internet of Things architecture for acoustical sensing and analysis for frequent remote respiratory assessments. The proposed system creates a foundation for enabling real-time therapy and patient feedback adjustment in a telemedicine setting. By allowing continuous remote respiratory monitoring, the system has the potential to give clinicians access to assessments from which they could make decisions about modifying therapy in real-time and communicate changes directly to patients. The system comprises a wearable wireless microphone array interfaced with a programmable microcontroller with embedded signal conditioning. Experiments on the phantom model were conducted to demonstrate the feasibility of reconstructing acoustic lung images for detecting obstructions in the airway and provided controlled validation of noise resilience and imaging capabilities. An optimized denoising technique and design innovations provided 7 dB more SNR and 7% more imaging accuracy for the proposed system, benchmarked against digital stethoscopes. While further clinical studies are warranted, initial results suggest potential benefits over single-point digital stethoscopes for internet-enabled remote lung monitoring needing noise immunity and regional specificity. The flexible architecture aims to bridge critical technical gaps in frequent and connected respiratory function at home or in busy clinical settings challenged by ambient noise interference.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13091669</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Acoustic properties ; Acoustics ; Airway management ; Assessments ; Asthma ; Biometrics ; Chronic obstructive pulmonary disease ; Computer architecture ; Design optimization ; Digital imaging ; Image reconstruction ; Internet of Things ; Lung diseases ; Lungs ; Medical research ; Medicine, Experimental ; Microelectromechanical systems ; Microphones ; Monitoring systems ; Noise monitoring ; Obstructions ; Patient compliance ; Patients ; Real time ; Remote monitoring ; Remote sensing ; Respiration ; Respiratory diseases ; Sensors ; Sound ; Stethoscopes ; Telemedicine ; Therapy</subject><ispartof>Electronics (Basel), 2024-05, Vol.13 (9), p.1669</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c339t-af6553b347ebbd0275b3525a2d4972d6d3bc2520b9d94e4e666e62eaaae2dfcb3</cites><orcidid>0000-0003-0481-7942 ; 0000-0002-8151-3101 ; 0000-0002-4482-2271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3053154297/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3053154297?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Muhammad, Murdifi</creatorcontrib><creatorcontrib>Li, Minghui</creatorcontrib><creatorcontrib>Lou, Yaolong</creatorcontrib><creatorcontrib>Lee, Chang-Sheng</creatorcontrib><title>Continual Monitoring of Respiratory Disorders to Enhance Therapy via Real-Time Lung Sound Imaging in Telemedicine</title><title>Electronics (Basel)</title><description>This work presents a configurable Internet of Things architecture for acoustical sensing and analysis for frequent remote respiratory assessments. The proposed system creates a foundation for enabling real-time therapy and patient feedback adjustment in a telemedicine setting. By allowing continuous remote respiratory monitoring, the system has the potential to give clinicians access to assessments from which they could make decisions about modifying therapy in real-time and communicate changes directly to patients. The system comprises a wearable wireless microphone array interfaced with a programmable microcontroller with embedded signal conditioning. Experiments on the phantom model were conducted to demonstrate the feasibility of reconstructing acoustic lung images for detecting obstructions in the airway and provided controlled validation of noise resilience and imaging capabilities. An optimized denoising technique and design innovations provided 7 dB more SNR and 7% more imaging accuracy for the proposed system, benchmarked against digital stethoscopes. While further clinical studies are warranted, initial results suggest potential benefits over single-point digital stethoscopes for internet-enabled remote lung monitoring needing noise immunity and regional specificity. The flexible architecture aims to bridge critical technical gaps in frequent and connected respiratory function at home or in busy clinical settings challenged by ambient noise interference.</description><subject>Accuracy</subject><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Airway management</subject><subject>Assessments</subject><subject>Asthma</subject><subject>Biometrics</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Computer architecture</subject><subject>Design optimization</subject><subject>Digital imaging</subject><subject>Image reconstruction</subject><subject>Internet of Things</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Microelectromechanical systems</subject><subject>Microphones</subject><subject>Monitoring systems</subject><subject>Noise monitoring</subject><subject>Obstructions</subject><subject>Patient compliance</subject><subject>Patients</subject><subject>Real time</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Respiration</subject><subject>Respiratory diseases</subject><subject>Sensors</subject><subject>Sound</subject><subject>Stethoscopes</subject><subject>Telemedicine</subject><subject>Therapy</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUVFLwzAQLqLg0P0CXwI-d6ZJky6PY04dTAStzyVNrltGm2xJK-zfmzFBhd093PHxfd_dcUlyl-EJpQI_QAuq984aFTKKRca5uEhGBBciFUSQyz_9dTIOYYtjiIxOKR4l-7mzvbGDbNFrtOidN3aNXIPeIeyMlxE4oEcTnNfgA-odWtiNtApQuQEvdwf0ZWQkyzYtTQdoNUT5hxusRstOro9mxqIy7tiBNspYuE2uGtkGGP_Um-TzaVHOX9LV2_NyPlulKl7Vp7LhjNGa5gXUtcakYDVlhEmic1EQzTWtFWEE10KLHHLgnAMnIKUEohtV05vk_uS7824_QOirrRu8jSMrihnNWE5E8ctayxYqYxvXe6k6E1Q1KwRlvMj5NLImZ1gxNXRGOQuNifg_AT0JlHcheGiqnTed9Icqw9Xxa9WZr9Fv1maN8w</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Muhammad, Murdifi</creator><creator>Li, Minghui</creator><creator>Lou, Yaolong</creator><creator>Lee, Chang-Sheng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0481-7942</orcidid><orcidid>https://orcid.org/0000-0002-8151-3101</orcidid><orcidid>https://orcid.org/0000-0002-4482-2271</orcidid></search><sort><creationdate>20240501</creationdate><title>Continual Monitoring of Respiratory Disorders to Enhance Therapy via Real-Time Lung Sound Imaging in Telemedicine</title><author>Muhammad, Murdifi ; Li, Minghui ; Lou, Yaolong ; Lee, Chang-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-af6553b347ebbd0275b3525a2d4972d6d3bc2520b9d94e4e666e62eaaae2dfcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Airway management</topic><topic>Assessments</topic><topic>Asthma</topic><topic>Biometrics</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Computer architecture</topic><topic>Design optimization</topic><topic>Digital imaging</topic><topic>Image reconstruction</topic><topic>Internet of Things</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Microelectromechanical systems</topic><topic>Microphones</topic><topic>Monitoring systems</topic><topic>Noise monitoring</topic><topic>Obstructions</topic><topic>Patient compliance</topic><topic>Patients</topic><topic>Real time</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Respiration</topic><topic>Respiratory diseases</topic><topic>Sensors</topic><topic>Sound</topic><topic>Stethoscopes</topic><topic>Telemedicine</topic><topic>Therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhammad, Murdifi</creatorcontrib><creatorcontrib>Li, Minghui</creatorcontrib><creatorcontrib>Lou, Yaolong</creatorcontrib><creatorcontrib>Lee, Chang-Sheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhammad, Murdifi</au><au>Li, Minghui</au><au>Lou, Yaolong</au><au>Lee, Chang-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continual Monitoring of Respiratory Disorders to Enhance Therapy via Real-Time Lung Sound Imaging in Telemedicine</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>13</volume><issue>9</issue><spage>1669</spage><pages>1669-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This work presents a configurable Internet of Things architecture for acoustical sensing and analysis for frequent remote respiratory assessments. The proposed system creates a foundation for enabling real-time therapy and patient feedback adjustment in a telemedicine setting. By allowing continuous remote respiratory monitoring, the system has the potential to give clinicians access to assessments from which they could make decisions about modifying therapy in real-time and communicate changes directly to patients. The system comprises a wearable wireless microphone array interfaced with a programmable microcontroller with embedded signal conditioning. Experiments on the phantom model were conducted to demonstrate the feasibility of reconstructing acoustic lung images for detecting obstructions in the airway and provided controlled validation of noise resilience and imaging capabilities. An optimized denoising technique and design innovations provided 7 dB more SNR and 7% more imaging accuracy for the proposed system, benchmarked against digital stethoscopes. While further clinical studies are warranted, initial results suggest potential benefits over single-point digital stethoscopes for internet-enabled remote lung monitoring needing noise immunity and regional specificity. The flexible architecture aims to bridge critical technical gaps in frequent and connected respiratory function at home or in busy clinical settings challenged by ambient noise interference.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13091669</doi><orcidid>https://orcid.org/0000-0003-0481-7942</orcidid><orcidid>https://orcid.org/0000-0002-8151-3101</orcidid><orcidid>https://orcid.org/0000-0002-4482-2271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-05, Vol.13 (9), p.1669 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3053154297 |
source | Publicly Available Content (ProQuest) |
subjects | Accuracy Acoustic properties Acoustics Airway management Assessments Asthma Biometrics Chronic obstructive pulmonary disease Computer architecture Design optimization Digital imaging Image reconstruction Internet of Things Lung diseases Lungs Medical research Medicine, Experimental Microelectromechanical systems Microphones Monitoring systems Noise monitoring Obstructions Patient compliance Patients Real time Remote monitoring Remote sensing Respiration Respiratory diseases Sensors Sound Stethoscopes Telemedicine Therapy |
title | Continual Monitoring of Respiratory Disorders to Enhance Therapy via Real-Time Lung Sound Imaging in Telemedicine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continual%20Monitoring%20of%20Respiratory%20Disorders%20to%20Enhance%20Therapy%20via%20Real-Time%20Lung%20Sound%20Imaging%20in%20Telemedicine&rft.jtitle=Electronics%20(Basel)&rft.au=Muhammad,%20Murdifi&rft.date=2024-05-01&rft.volume=13&rft.issue=9&rft.spage=1669&rft.pages=1669-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13091669&rft_dat=%3Cgale_proqu%3EA793567468%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-af6553b347ebbd0275b3525a2d4972d6d3bc2520b9d94e4e666e62eaaae2dfcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053154297&rft_id=info:pmid/&rft_galeid=A793567468&rfr_iscdi=true |