Loading…

Research on Active Disturbance Rejection Control with Parameter Autotuning for a Moving Mirror Control System Based on Improved Snake Optimization

In order to improve the control of a moving mirror control system and enhance the anti-interference ability of the system, active disturbance rejection control (ADRC) with parameter autotuning is proposed and applied to control a rotary voice coil motor (RVCM). Improved snake optimization (I-SO) was...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2024-05, Vol.13 (9), p.1650
Main Authors: Zhi, Liangjie, Huang, Min, Qian, Lulu, Wang, Zhanchao, Wen, Qin, Han, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c311t-e3355f8fe802d9df22897d36c04b4a0ef5b72f51c66c7e2647037c5fe5cf6abc3
container_end_page
container_issue 9
container_start_page 1650
container_title Electronics (Basel)
container_volume 13
creator Zhi, Liangjie
Huang, Min
Qian, Lulu
Wang, Zhanchao
Wen, Qin
Han, Wei
description In order to improve the control of a moving mirror control system and enhance the anti-interference ability of the system, active disturbance rejection control (ADRC) with parameter autotuning is proposed and applied to control a rotary voice coil motor (RVCM). Improved snake optimization (I-SO) was applied to tune and optimize ADRC’s key parameters. To obtain excellent parameters efficiently, in the population initialization phase of SO, the quality and diversity of initial solutions were improved through a chaotic elite opposition learning algorithm. In the local search phase, a sine and cosine (SC) search mode was introduced to enhance the local search ability of SO. The simulation results show that I-SO can effectively find the ideal parameters. I-SO has excellent search capability and stability. The experimental control system of a moving mirror was established, and the effectiveness of the parameters optimized by I-SO was verified. ADRC with parameter autotuning showed excellent control in the moving mirror control system, and the stability of the optical path scanning speed reached 99.2%.
doi_str_mv 10.3390/electronics13091650
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3053158065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793567355</galeid><sourcerecordid>A793567355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-e3355f8fe802d9df22897d36c04b4a0ef5b72f51c66c7e2647037c5fe5cf6abc3</originalsourceid><addsrcrecordid>eNptUU1PAjEQ3RhNJMov8NLEM9hu6e72iPhFAsGAnjelO4Ui22LbxeDP8BfbDZp4cOYwX-_Nm2SS5IrgPqUc38AWZHDWaOkJxZxkDJ8knRTnvMdTnp7-yc-TrvcbHI0TWlDcSb7m4EE4uUbWoKEMeg_oTvvQuKUwEtAcNnG7jsORNVFliz50WKNn4UQNARwaNsGGxmizQso6JNDU7ttiqp2L9S9rcfABanQrPFSt1LjeObuP-cKIN0CzXdC1_hSt0mVypsTWQ_cnXiSvD_cvo6feZPY4Hg0nPUkJCT2glDFVKChwWvFKpWnB84pmEg-WA4FBsWWeKkZklskc0myQY5pLpoBJlYmlpBfJ9XFvvOS9AR_KjW2ciZIlxYwSVuCMRVT_iFqJLZTaKBuckNErqLW0BpSO_WHOKcvyeFEk0CNBOuu9A1XunK6FO5QEl-3Dyn8eRr8BCTiOxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053158065</pqid></control><display><type>article</type><title>Research on Active Disturbance Rejection Control with Parameter Autotuning for a Moving Mirror Control System Based on Improved Snake Optimization</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Zhi, Liangjie ; Huang, Min ; Qian, Lulu ; Wang, Zhanchao ; Wen, Qin ; Han, Wei</creator><creatorcontrib>Zhi, Liangjie ; Huang, Min ; Qian, Lulu ; Wang, Zhanchao ; Wen, Qin ; Han, Wei</creatorcontrib><description>In order to improve the control of a moving mirror control system and enhance the anti-interference ability of the system, active disturbance rejection control (ADRC) with parameter autotuning is proposed and applied to control a rotary voice coil motor (RVCM). Improved snake optimization (I-SO) was applied to tune and optimize ADRC’s key parameters. To obtain excellent parameters efficiently, in the population initialization phase of SO, the quality and diversity of initial solutions were improved through a chaotic elite opposition learning algorithm. In the local search phase, a sine and cosine (SC) search mode was introduced to enhance the local search ability of SO. The simulation results show that I-SO can effectively find the ideal parameters. I-SO has excellent search capability and stability. The experimental control system of a moving mirror was established, and the effectiveness of the parameters optimized by I-SO was verified. ADRC with parameter autotuning showed excellent control in the moving mirror control system, and the stability of the optical path scanning speed reached 99.2%.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13091650</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Active control ; Algorithms ; Control systems ; Controllers ; Data mining ; Machine learning ; Mathematical models ; Mirrors ; Optimization ; Optimization algorithms ; Parameters ; Rejection ; Searching ; Snakes</subject><ispartof>Electronics (Basel), 2024-05, Vol.13 (9), p.1650</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-e3355f8fe802d9df22897d36c04b4a0ef5b72f51c66c7e2647037c5fe5cf6abc3</cites><orcidid>0000-0002-0077-5696 ; 0000-0002-3118-2017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3053158065/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3053158065?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhi, Liangjie</creatorcontrib><creatorcontrib>Huang, Min</creatorcontrib><creatorcontrib>Qian, Lulu</creatorcontrib><creatorcontrib>Wang, Zhanchao</creatorcontrib><creatorcontrib>Wen, Qin</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><title>Research on Active Disturbance Rejection Control with Parameter Autotuning for a Moving Mirror Control System Based on Improved Snake Optimization</title><title>Electronics (Basel)</title><description>In order to improve the control of a moving mirror control system and enhance the anti-interference ability of the system, active disturbance rejection control (ADRC) with parameter autotuning is proposed and applied to control a rotary voice coil motor (RVCM). Improved snake optimization (I-SO) was applied to tune and optimize ADRC’s key parameters. To obtain excellent parameters efficiently, in the population initialization phase of SO, the quality and diversity of initial solutions were improved through a chaotic elite opposition learning algorithm. In the local search phase, a sine and cosine (SC) search mode was introduced to enhance the local search ability of SO. The simulation results show that I-SO can effectively find the ideal parameters. I-SO has excellent search capability and stability. The experimental control system of a moving mirror was established, and the effectiveness of the parameters optimized by I-SO was verified. ADRC with parameter autotuning showed excellent control in the moving mirror control system, and the stability of the optical path scanning speed reached 99.2%.</description><subject>Accuracy</subject><subject>Active control</subject><subject>Algorithms</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Data mining</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mirrors</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameters</subject><subject>Rejection</subject><subject>Searching</subject><subject>Snakes</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUU1PAjEQ3RhNJMov8NLEM9hu6e72iPhFAsGAnjelO4Ui22LbxeDP8BfbDZp4cOYwX-_Nm2SS5IrgPqUc38AWZHDWaOkJxZxkDJ8knRTnvMdTnp7-yc-TrvcbHI0TWlDcSb7m4EE4uUbWoKEMeg_oTvvQuKUwEtAcNnG7jsORNVFliz50WKNn4UQNARwaNsGGxmizQso6JNDU7ttiqp2L9S9rcfABanQrPFSt1LjeObuP-cKIN0CzXdC1_hSt0mVypsTWQ_cnXiSvD_cvo6feZPY4Hg0nPUkJCT2glDFVKChwWvFKpWnB84pmEg-WA4FBsWWeKkZklskc0myQY5pLpoBJlYmlpBfJ9XFvvOS9AR_KjW2ciZIlxYwSVuCMRVT_iFqJLZTaKBuckNErqLW0BpSO_WHOKcvyeFEk0CNBOuu9A1XunK6FO5QEl-3Dyn8eRr8BCTiOxw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhi, Liangjie</creator><creator>Huang, Min</creator><creator>Qian, Lulu</creator><creator>Wang, Zhanchao</creator><creator>Wen, Qin</creator><creator>Han, Wei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0077-5696</orcidid><orcidid>https://orcid.org/0000-0002-3118-2017</orcidid></search><sort><creationdate>20240501</creationdate><title>Research on Active Disturbance Rejection Control with Parameter Autotuning for a Moving Mirror Control System Based on Improved Snake Optimization</title><author>Zhi, Liangjie ; Huang, Min ; Qian, Lulu ; Wang, Zhanchao ; Wen, Qin ; Han, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-e3355f8fe802d9df22897d36c04b4a0ef5b72f51c66c7e2647037c5fe5cf6abc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Active control</topic><topic>Algorithms</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Data mining</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mirrors</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameters</topic><topic>Rejection</topic><topic>Searching</topic><topic>Snakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhi, Liangjie</creatorcontrib><creatorcontrib>Huang, Min</creatorcontrib><creatorcontrib>Qian, Lulu</creatorcontrib><creatorcontrib>Wang, Zhanchao</creatorcontrib><creatorcontrib>Wen, Qin</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhi, Liangjie</au><au>Huang, Min</au><au>Qian, Lulu</au><au>Wang, Zhanchao</au><au>Wen, Qin</au><au>Han, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Active Disturbance Rejection Control with Parameter Autotuning for a Moving Mirror Control System Based on Improved Snake Optimization</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>13</volume><issue>9</issue><spage>1650</spage><pages>1650-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In order to improve the control of a moving mirror control system and enhance the anti-interference ability of the system, active disturbance rejection control (ADRC) with parameter autotuning is proposed and applied to control a rotary voice coil motor (RVCM). Improved snake optimization (I-SO) was applied to tune and optimize ADRC’s key parameters. To obtain excellent parameters efficiently, in the population initialization phase of SO, the quality and diversity of initial solutions were improved through a chaotic elite opposition learning algorithm. In the local search phase, a sine and cosine (SC) search mode was introduced to enhance the local search ability of SO. The simulation results show that I-SO can effectively find the ideal parameters. I-SO has excellent search capability and stability. The experimental control system of a moving mirror was established, and the effectiveness of the parameters optimized by I-SO was verified. ADRC with parameter autotuning showed excellent control in the moving mirror control system, and the stability of the optical path scanning speed reached 99.2%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13091650</doi><orcidid>https://orcid.org/0000-0002-0077-5696</orcidid><orcidid>https://orcid.org/0000-0002-3118-2017</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-05, Vol.13 (9), p.1650
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3053158065
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
Active control
Algorithms
Control systems
Controllers
Data mining
Machine learning
Mathematical models
Mirrors
Optimization
Optimization algorithms
Parameters
Rejection
Searching
Snakes
title Research on Active Disturbance Rejection Control with Parameter Autotuning for a Moving Mirror Control System Based on Improved Snake Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Active%20Disturbance%20Rejection%20Control%20with%20Parameter%20Autotuning%20for%20a%20Moving%20Mirror%20Control%20System%20Based%20on%20Improved%20Snake%20Optimization&rft.jtitle=Electronics%20(Basel)&rft.au=Zhi,%20Liangjie&rft.date=2024-05-01&rft.volume=13&rft.issue=9&rft.spage=1650&rft.pages=1650-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13091650&rft_dat=%3Cgale_proqu%3EA793567355%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-e3355f8fe802d9df22897d36c04b4a0ef5b72f51c66c7e2647037c5fe5cf6abc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053158065&rft_id=info:pmid/&rft_galeid=A793567355&rfr_iscdi=true