Loading…

Optimization Based on Computational Fluid Dynamics and Machine Learning for the Performance of Diffuser-Augmented Wind Turbines with Inlet Shrouds

A methodology that could reduce computational cost and time, combining computational fluid dynamics (CFD) simulations, neural networks, and genetic algorithms to determine a diffuser-augmented wind turbine (DAWT) design is proposed. The specific approach used implements a CFD simulation validated wi...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2024-05, Vol.16 (9), p.3648
Main Authors: Hwang, Po-Wen, Wu, Jia-Heng, Chang, Yuan-Jen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c327t-8521af93d22c73b50d2ef22b6ad8a338f3bd85c8cca37971e1f10b06e1bcdc2f3
container_end_page
container_issue 9
container_start_page 3648
container_title Sustainability
container_volume 16
creator Hwang, Po-Wen
Wu, Jia-Heng
Chang, Yuan-Jen
description A methodology that could reduce computational cost and time, combining computational fluid dynamics (CFD) simulations, neural networks, and genetic algorithms to determine a diffuser-augmented wind turbine (DAWT) design is proposed. The specific approach used implements a CFD simulation validated with experimental data, and key parameters are analyzed to generate datasets for the relevant mathematical model established with the backpropagation neural network algorithm. Then, the mathematical model is used with the non-dominant sorting genetic algorithm II to optimize the design and improve the DAWT design to overcome negative constraints such as noise and low energy density. The key parameters adopted are the diffuser’s flange height/angle, the diffuser’s length, and the rotor’s axial position. It was found that the impact of the rotor’s axial position on the power output of the DAWT is the most significant parameter, and a well-designed diffuser requires accelerating the airflow while maintaining high-pressure recovery. Introducing a diffuser can suppress the wind turbine’s noise, but if the induced tip vortex is too strong, it will have the opposite effect on the noise reduction.
doi_str_mv 10.3390/su16093648
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3053205244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793570506</galeid><sourcerecordid>A793570506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-8521af93d22c73b50d2ef22b6ad8a338f3bd85c8cca37971e1f10b06e1bcdc2f3</originalsourceid><addsrcrecordid>eNpVkdtKHEEQhoeQQES98QkavDIw2oed0-VmjcnCiuKBXA413dW7LTPdmz6QmMfwiW3dgLHqon6K7y-oqqI4YvRUiI6ehcRq2ol61n4o9jhtWMloRT_-pz8XhyE80BxCsI7Ve8XT1TaayfyFaJwlXyGgIlks3LRN8bUJI7kYk1Hk_NHCZGQgYBW5BLkxFskKwVtj10Q7T-IGyTX6LCewEonT5NxonQL6cp7WE9qYx_802X-X_JD9gfw2cUOWdsRIbjfeJRUOik8axoCH_-p-cX_x7W7xo1xdfV8u5qtSCt7Esq04A90JxblsxFBRxVFzPtSgWhCi1WJQbSVbKUE0XcOQaUYHWiMbpJJci_3ieDd3692vhCH2Dy75vG_oBa0EpxWfzTJ1uqPWMGJvrHbRg8ypMB_DWdQm9-dNJ6omX7jOhpN3hsxE_BPXkELol7c379kvO1Z6F4JH3W-9mcA_9oz2Lz_t334qngGutZTa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053205244</pqid></control><display><type>article</type><title>Optimization Based on Computational Fluid Dynamics and Machine Learning for the Performance of Diffuser-Augmented Wind Turbines with Inlet Shrouds</title><source>Publicly Available Content Database</source><creator>Hwang, Po-Wen ; Wu, Jia-Heng ; Chang, Yuan-Jen</creator><creatorcontrib>Hwang, Po-Wen ; Wu, Jia-Heng ; Chang, Yuan-Jen</creatorcontrib><description>A methodology that could reduce computational cost and time, combining computational fluid dynamics (CFD) simulations, neural networks, and genetic algorithms to determine a diffuser-augmented wind turbine (DAWT) design is proposed. The specific approach used implements a CFD simulation validated with experimental data, and key parameters are analyzed to generate datasets for the relevant mathematical model established with the backpropagation neural network algorithm. Then, the mathematical model is used with the non-dominant sorting genetic algorithm II to optimize the design and improve the DAWT design to overcome negative constraints such as noise and low energy density. The key parameters adopted are the diffuser’s flange height/angle, the diffuser’s length, and the rotor’s axial position. It was found that the impact of the rotor’s axial position on the power output of the DAWT is the most significant parameter, and a well-designed diffuser requires accelerating the airflow while maintaining high-pressure recovery. Introducing a diffuser can suppress the wind turbine’s noise, but if the induced tip vortex is too strong, it will have the opposite effect on the noise reduction.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16093648</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air-turbines ; Algorithms ; Alternative energy sources ; Analysis ; Biomass energy ; Electricity ; Environmental impact ; Machine learning ; Neural networks ; Noise ; Noise control ; Renewable resources ; Simulation ; Simulation methods ; Turbines ; Vortices ; Wind power</subject><ispartof>Sustainability, 2024-05, Vol.16 (9), p.3648</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-8521af93d22c73b50d2ef22b6ad8a338f3bd85c8cca37971e1f10b06e1bcdc2f3</cites><orcidid>0009-0000-6840-603X ; 0000-0002-0369-8833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3053205244/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3053205244?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Hwang, Po-Wen</creatorcontrib><creatorcontrib>Wu, Jia-Heng</creatorcontrib><creatorcontrib>Chang, Yuan-Jen</creatorcontrib><title>Optimization Based on Computational Fluid Dynamics and Machine Learning for the Performance of Diffuser-Augmented Wind Turbines with Inlet Shrouds</title><title>Sustainability</title><description>A methodology that could reduce computational cost and time, combining computational fluid dynamics (CFD) simulations, neural networks, and genetic algorithms to determine a diffuser-augmented wind turbine (DAWT) design is proposed. The specific approach used implements a CFD simulation validated with experimental data, and key parameters are analyzed to generate datasets for the relevant mathematical model established with the backpropagation neural network algorithm. Then, the mathematical model is used with the non-dominant sorting genetic algorithm II to optimize the design and improve the DAWT design to overcome negative constraints such as noise and low energy density. The key parameters adopted are the diffuser’s flange height/angle, the diffuser’s length, and the rotor’s axial position. It was found that the impact of the rotor’s axial position on the power output of the DAWT is the most significant parameter, and a well-designed diffuser requires accelerating the airflow while maintaining high-pressure recovery. Introducing a diffuser can suppress the wind turbine’s noise, but if the induced tip vortex is too strong, it will have the opposite effect on the noise reduction.</description><subject>Air-turbines</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Biomass energy</subject><subject>Electricity</subject><subject>Environmental impact</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise control</subject><subject>Renewable resources</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Turbines</subject><subject>Vortices</subject><subject>Wind power</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkdtKHEEQhoeQQES98QkavDIw2oed0-VmjcnCiuKBXA413dW7LTPdmz6QmMfwiW3dgLHqon6K7y-oqqI4YvRUiI6ehcRq2ol61n4o9jhtWMloRT_-pz8XhyE80BxCsI7Ve8XT1TaayfyFaJwlXyGgIlks3LRN8bUJI7kYk1Hk_NHCZGQgYBW5BLkxFskKwVtj10Q7T-IGyTX6LCewEonT5NxonQL6cp7WE9qYx_802X-X_JD9gfw2cUOWdsRIbjfeJRUOik8axoCH_-p-cX_x7W7xo1xdfV8u5qtSCt7Esq04A90JxblsxFBRxVFzPtSgWhCi1WJQbSVbKUE0XcOQaUYHWiMbpJJci_3ieDd3692vhCH2Dy75vG_oBa0EpxWfzTJ1uqPWMGJvrHbRg8ypMB_DWdQm9-dNJ6omX7jOhpN3hsxE_BPXkELol7c379kvO1Z6F4JH3W-9mcA_9oz2Lz_t334qngGutZTa</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Hwang, Po-Wen</creator><creator>Wu, Jia-Heng</creator><creator>Chang, Yuan-Jen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0000-6840-603X</orcidid><orcidid>https://orcid.org/0000-0002-0369-8833</orcidid></search><sort><creationdate>20240501</creationdate><title>Optimization Based on Computational Fluid Dynamics and Machine Learning for the Performance of Diffuser-Augmented Wind Turbines with Inlet Shrouds</title><author>Hwang, Po-Wen ; Wu, Jia-Heng ; Chang, Yuan-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-8521af93d22c73b50d2ef22b6ad8a338f3bd85c8cca37971e1f10b06e1bcdc2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air-turbines</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Biomass energy</topic><topic>Electricity</topic><topic>Environmental impact</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise control</topic><topic>Renewable resources</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Turbines</topic><topic>Vortices</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Po-Wen</creatorcontrib><creatorcontrib>Wu, Jia-Heng</creatorcontrib><creatorcontrib>Chang, Yuan-Jen</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Po-Wen</au><au>Wu, Jia-Heng</au><au>Chang, Yuan-Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization Based on Computational Fluid Dynamics and Machine Learning for the Performance of Diffuser-Augmented Wind Turbines with Inlet Shrouds</atitle><jtitle>Sustainability</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>16</volume><issue>9</issue><spage>3648</spage><pages>3648-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>A methodology that could reduce computational cost and time, combining computational fluid dynamics (CFD) simulations, neural networks, and genetic algorithms to determine a diffuser-augmented wind turbine (DAWT) design is proposed. The specific approach used implements a CFD simulation validated with experimental data, and key parameters are analyzed to generate datasets for the relevant mathematical model established with the backpropagation neural network algorithm. Then, the mathematical model is used with the non-dominant sorting genetic algorithm II to optimize the design and improve the DAWT design to overcome negative constraints such as noise and low energy density. The key parameters adopted are the diffuser’s flange height/angle, the diffuser’s length, and the rotor’s axial position. It was found that the impact of the rotor’s axial position on the power output of the DAWT is the most significant parameter, and a well-designed diffuser requires accelerating the airflow while maintaining high-pressure recovery. Introducing a diffuser can suppress the wind turbine’s noise, but if the induced tip vortex is too strong, it will have the opposite effect on the noise reduction.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16093648</doi><orcidid>https://orcid.org/0009-0000-6840-603X</orcidid><orcidid>https://orcid.org/0000-0002-0369-8833</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-05, Vol.16 (9), p.3648
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_3053205244
source Publicly Available Content Database
subjects Air-turbines
Algorithms
Alternative energy sources
Analysis
Biomass energy
Electricity
Environmental impact
Machine learning
Neural networks
Noise
Noise control
Renewable resources
Simulation
Simulation methods
Turbines
Vortices
Wind power
title Optimization Based on Computational Fluid Dynamics and Machine Learning for the Performance of Diffuser-Augmented Wind Turbines with Inlet Shrouds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20Based%20on%20Computational%20Fluid%20Dynamics%20and%20Machine%20Learning%20for%20the%20Performance%20of%20Diffuser-Augmented%20Wind%20Turbines%20with%20Inlet%20Shrouds&rft.jtitle=Sustainability&rft.au=Hwang,%20Po-Wen&rft.date=2024-05-01&rft.volume=16&rft.issue=9&rft.spage=3648&rft.pages=3648-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16093648&rft_dat=%3Cgale_proqu%3EA793570506%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-8521af93d22c73b50d2ef22b6ad8a338f3bd85c8cca37971e1f10b06e1bcdc2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053205244&rft_id=info:pmid/&rft_galeid=A793570506&rfr_iscdi=true