Loading…
Engineering tertiary chirality in helical biopolymers
Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investi...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2024-05, Vol.121 (19), p.1 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 19 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Janowski, Jordan Pham, Van A B Vecchioni, Simon Woloszyn, Karol Lu, Brandon Zou, Yijia Erkalo, Betel Perren, Lara Rueb, Joe Madnick, Jesse Mao, Chengde Saito, Masahico Ohayon, Yoel P Jonoska, Nataša Sha, Ruojie |
description | Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience. |
doi_str_mv | 10.1073/pnas.232199212 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3053237555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053237555</sourcerecordid><originalsourceid>FETCH-proquest_journals_30532375553</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGaCL-rM5NnMHblgqdDcYHcCeVVLikttjCwNvr4AM4neE7hBwYZAwKcRqcjhkXnCnFGV-QhIFi6TlXsCQJAC_SMuf5mmxi7AFAyRISIivXojMmoGvpaMKIOsy06TBoi-NM0dHOWGy0pQ_0g7fzy4S4I6unttHsf92S47W6X27pEPx7MnGsez8F96VagBRcFFJK8d_1AdpuPDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053237555</pqid></control><display><type>article</type><title>Engineering tertiary chirality in helical biopolymers</title><source>PMC (PubMed Central)</source><creator>Janowski, Jordan ; Pham, Van A B ; Vecchioni, Simon ; Woloszyn, Karol ; Lu, Brandon ; Zou, Yijia ; Erkalo, Betel ; Perren, Lara ; Rueb, Joe ; Madnick, Jesse ; Mao, Chengde ; Saito, Masahico ; Ohayon, Yoel P ; Jonoska, Nataša ; Sha, Ruojie</creator><creatorcontrib>Janowski, Jordan ; Pham, Van A B ; Vecchioni, Simon ; Woloszyn, Karol ; Lu, Brandon ; Zou, Yijia ; Erkalo, Betel ; Perren, Lara ; Rueb, Joe ; Madnick, Jesse ; Mao, Chengde ; Saito, Masahico ; Ohayon, Yoel P ; Jonoska, Nataša ; Sha, Ruojie</creatorcontrib><description>Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.232199212</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Assemblies ; Biopolymers ; Chirality ; Crystals ; Deoxyribonucleic acid ; DNA ; Handedness ; Mathematical models ; Nanomaterials ; Nanotechnology ; Optical activity ; Optical properties ; Physical properties ; Tensegrity ; X-ray diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-05, Vol.121 (19), p.1</ispartof><rights>Copyright National Academy of Sciences May 7, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Janowski, Jordan</creatorcontrib><creatorcontrib>Pham, Van A B</creatorcontrib><creatorcontrib>Vecchioni, Simon</creatorcontrib><creatorcontrib>Woloszyn, Karol</creatorcontrib><creatorcontrib>Lu, Brandon</creatorcontrib><creatorcontrib>Zou, Yijia</creatorcontrib><creatorcontrib>Erkalo, Betel</creatorcontrib><creatorcontrib>Perren, Lara</creatorcontrib><creatorcontrib>Rueb, Joe</creatorcontrib><creatorcontrib>Madnick, Jesse</creatorcontrib><creatorcontrib>Mao, Chengde</creatorcontrib><creatorcontrib>Saito, Masahico</creatorcontrib><creatorcontrib>Ohayon, Yoel P</creatorcontrib><creatorcontrib>Jonoska, Nataša</creatorcontrib><creatorcontrib>Sha, Ruojie</creatorcontrib><title>Engineering tertiary chirality in helical biopolymers</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience.</description><subject>Assemblies</subject><subject>Biopolymers</subject><subject>Chirality</subject><subject>Crystals</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Handedness</subject><subject>Mathematical models</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Optical activity</subject><subject>Optical properties</subject><subject>Physical properties</subject><subject>Tensegrity</subject><subject>X-ray diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNyr0OgjAUQOHGaCL-rM5NnMHblgqdDcYHcCeVVLikttjCwNvr4AM4neE7hBwYZAwKcRqcjhkXnCnFGV-QhIFi6TlXsCQJAC_SMuf5mmxi7AFAyRISIivXojMmoGvpaMKIOsy06TBoi-NM0dHOWGy0pQ_0g7fzy4S4I6unttHsf92S47W6X27pEPx7MnGsez8F96VagBRcFFJK8d_1AdpuPDk</recordid><startdate>20240507</startdate><enddate>20240507</enddate><creator>Janowski, Jordan</creator><creator>Pham, Van A B</creator><creator>Vecchioni, Simon</creator><creator>Woloszyn, Karol</creator><creator>Lu, Brandon</creator><creator>Zou, Yijia</creator><creator>Erkalo, Betel</creator><creator>Perren, Lara</creator><creator>Rueb, Joe</creator><creator>Madnick, Jesse</creator><creator>Mao, Chengde</creator><creator>Saito, Masahico</creator><creator>Ohayon, Yoel P</creator><creator>Jonoska, Nataša</creator><creator>Sha, Ruojie</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20240507</creationdate><title>Engineering tertiary chirality in helical biopolymers</title><author>Janowski, Jordan ; Pham, Van A B ; Vecchioni, Simon ; Woloszyn, Karol ; Lu, Brandon ; Zou, Yijia ; Erkalo, Betel ; Perren, Lara ; Rueb, Joe ; Madnick, Jesse ; Mao, Chengde ; Saito, Masahico ; Ohayon, Yoel P ; Jonoska, Nataša ; Sha, Ruojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30532375553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assemblies</topic><topic>Biopolymers</topic><topic>Chirality</topic><topic>Crystals</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Handedness</topic><topic>Mathematical models</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Optical activity</topic><topic>Optical properties</topic><topic>Physical properties</topic><topic>Tensegrity</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janowski, Jordan</creatorcontrib><creatorcontrib>Pham, Van A B</creatorcontrib><creatorcontrib>Vecchioni, Simon</creatorcontrib><creatorcontrib>Woloszyn, Karol</creatorcontrib><creatorcontrib>Lu, Brandon</creatorcontrib><creatorcontrib>Zou, Yijia</creatorcontrib><creatorcontrib>Erkalo, Betel</creatorcontrib><creatorcontrib>Perren, Lara</creatorcontrib><creatorcontrib>Rueb, Joe</creatorcontrib><creatorcontrib>Madnick, Jesse</creatorcontrib><creatorcontrib>Mao, Chengde</creatorcontrib><creatorcontrib>Saito, Masahico</creatorcontrib><creatorcontrib>Ohayon, Yoel P</creatorcontrib><creatorcontrib>Jonoska, Nataša</creatorcontrib><creatorcontrib>Sha, Ruojie</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janowski, Jordan</au><au>Pham, Van A B</au><au>Vecchioni, Simon</au><au>Woloszyn, Karol</au><au>Lu, Brandon</au><au>Zou, Yijia</au><au>Erkalo, Betel</au><au>Perren, Lara</au><au>Rueb, Joe</au><au>Madnick, Jesse</au><au>Mao, Chengde</au><au>Saito, Masahico</au><au>Ohayon, Yoel P</au><au>Jonoska, Nataša</au><au>Sha, Ruojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering tertiary chirality in helical biopolymers</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2024-05-07</date><risdate>2024</risdate><volume>121</volume><issue>19</issue><spage>1</spage><pages>1-</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><doi>10.1073/pnas.232199212</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-05, Vol.121 (19), p.1 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_3053237555 |
source | PMC (PubMed Central) |
subjects | Assemblies Biopolymers Chirality Crystals Deoxyribonucleic acid DNA Handedness Mathematical models Nanomaterials Nanotechnology Optical activity Optical properties Physical properties Tensegrity X-ray diffraction |
title | Engineering tertiary chirality in helical biopolymers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20tertiary%20chirality%20in%20helical%20biopolymers&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Janowski,%20Jordan&rft.date=2024-05-07&rft.volume=121&rft.issue=19&rft.spage=1&rft.pages=1-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.232199212&rft_dat=%3Cproquest%3E3053237555%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30532375553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053237555&rft_id=info:pmid/&rfr_iscdi=true |