Loading…

Engineering tertiary chirality in helical biopolymers

Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investi...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2024-05, Vol.121 (19), p.1
Main Authors: Janowski, Jordan, Pham, Van A B, Vecchioni, Simon, Woloszyn, Karol, Lu, Brandon, Zou, Yijia, Erkalo, Betel, Perren, Lara, Rueb, Joe, Madnick, Jesse, Mao, Chengde, Saito, Masahico, Ohayon, Yoel P, Jonoska, Nataša, Sha, Ruojie
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 19
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Janowski, Jordan
Pham, Van A B
Vecchioni, Simon
Woloszyn, Karol
Lu, Brandon
Zou, Yijia
Erkalo, Betel
Perren, Lara
Rueb, Joe
Madnick, Jesse
Mao, Chengde
Saito, Masahico
Ohayon, Yoel P
Jonoska, Nataša
Sha, Ruojie
description Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience.
doi_str_mv 10.1073/pnas.232199212
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3053237555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053237555</sourcerecordid><originalsourceid>FETCH-proquest_journals_30532375553</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGaCL-rM5NnMHblgqdDcYHcCeVVLikttjCwNvr4AM4neE7hBwYZAwKcRqcjhkXnCnFGV-QhIFi6TlXsCQJAC_SMuf5mmxi7AFAyRISIivXojMmoGvpaMKIOsy06TBoi-NM0dHOWGy0pQ_0g7fzy4S4I6unttHsf92S47W6X27pEPx7MnGsez8F96VagBRcFFJK8d_1AdpuPDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053237555</pqid></control><display><type>article</type><title>Engineering tertiary chirality in helical biopolymers</title><source>PMC (PubMed Central)</source><creator>Janowski, Jordan ; Pham, Van A B ; Vecchioni, Simon ; Woloszyn, Karol ; Lu, Brandon ; Zou, Yijia ; Erkalo, Betel ; Perren, Lara ; Rueb, Joe ; Madnick, Jesse ; Mao, Chengde ; Saito, Masahico ; Ohayon, Yoel P ; Jonoska, Nataša ; Sha, Ruojie</creator><creatorcontrib>Janowski, Jordan ; Pham, Van A B ; Vecchioni, Simon ; Woloszyn, Karol ; Lu, Brandon ; Zou, Yijia ; Erkalo, Betel ; Perren, Lara ; Rueb, Joe ; Madnick, Jesse ; Mao, Chengde ; Saito, Masahico ; Ohayon, Yoel P ; Jonoska, Nataša ; Sha, Ruojie</creatorcontrib><description>Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.232199212</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Assemblies ; Biopolymers ; Chirality ; Crystals ; Deoxyribonucleic acid ; DNA ; Handedness ; Mathematical models ; Nanomaterials ; Nanotechnology ; Optical activity ; Optical properties ; Physical properties ; Tensegrity ; X-ray diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-05, Vol.121 (19), p.1</ispartof><rights>Copyright National Academy of Sciences May 7, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Janowski, Jordan</creatorcontrib><creatorcontrib>Pham, Van A B</creatorcontrib><creatorcontrib>Vecchioni, Simon</creatorcontrib><creatorcontrib>Woloszyn, Karol</creatorcontrib><creatorcontrib>Lu, Brandon</creatorcontrib><creatorcontrib>Zou, Yijia</creatorcontrib><creatorcontrib>Erkalo, Betel</creatorcontrib><creatorcontrib>Perren, Lara</creatorcontrib><creatorcontrib>Rueb, Joe</creatorcontrib><creatorcontrib>Madnick, Jesse</creatorcontrib><creatorcontrib>Mao, Chengde</creatorcontrib><creatorcontrib>Saito, Masahico</creatorcontrib><creatorcontrib>Ohayon, Yoel P</creatorcontrib><creatorcontrib>Jonoska, Nataša</creatorcontrib><creatorcontrib>Sha, Ruojie</creatorcontrib><title>Engineering tertiary chirality in helical biopolymers</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience.</description><subject>Assemblies</subject><subject>Biopolymers</subject><subject>Chirality</subject><subject>Crystals</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Handedness</subject><subject>Mathematical models</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Optical activity</subject><subject>Optical properties</subject><subject>Physical properties</subject><subject>Tensegrity</subject><subject>X-ray diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNyr0OgjAUQOHGaCL-rM5NnMHblgqdDcYHcCeVVLikttjCwNvr4AM4neE7hBwYZAwKcRqcjhkXnCnFGV-QhIFi6TlXsCQJAC_SMuf5mmxi7AFAyRISIivXojMmoGvpaMKIOsy06TBoi-NM0dHOWGy0pQ_0g7fzy4S4I6unttHsf92S47W6X27pEPx7MnGsez8F96VagBRcFFJK8d_1AdpuPDk</recordid><startdate>20240507</startdate><enddate>20240507</enddate><creator>Janowski, Jordan</creator><creator>Pham, Van A B</creator><creator>Vecchioni, Simon</creator><creator>Woloszyn, Karol</creator><creator>Lu, Brandon</creator><creator>Zou, Yijia</creator><creator>Erkalo, Betel</creator><creator>Perren, Lara</creator><creator>Rueb, Joe</creator><creator>Madnick, Jesse</creator><creator>Mao, Chengde</creator><creator>Saito, Masahico</creator><creator>Ohayon, Yoel P</creator><creator>Jonoska, Nataša</creator><creator>Sha, Ruojie</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20240507</creationdate><title>Engineering tertiary chirality in helical biopolymers</title><author>Janowski, Jordan ; Pham, Van A B ; Vecchioni, Simon ; Woloszyn, Karol ; Lu, Brandon ; Zou, Yijia ; Erkalo, Betel ; Perren, Lara ; Rueb, Joe ; Madnick, Jesse ; Mao, Chengde ; Saito, Masahico ; Ohayon, Yoel P ; Jonoska, Nataša ; Sha, Ruojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30532375553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assemblies</topic><topic>Biopolymers</topic><topic>Chirality</topic><topic>Crystals</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Handedness</topic><topic>Mathematical models</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Optical activity</topic><topic>Optical properties</topic><topic>Physical properties</topic><topic>Tensegrity</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janowski, Jordan</creatorcontrib><creatorcontrib>Pham, Van A B</creatorcontrib><creatorcontrib>Vecchioni, Simon</creatorcontrib><creatorcontrib>Woloszyn, Karol</creatorcontrib><creatorcontrib>Lu, Brandon</creatorcontrib><creatorcontrib>Zou, Yijia</creatorcontrib><creatorcontrib>Erkalo, Betel</creatorcontrib><creatorcontrib>Perren, Lara</creatorcontrib><creatorcontrib>Rueb, Joe</creatorcontrib><creatorcontrib>Madnick, Jesse</creatorcontrib><creatorcontrib>Mao, Chengde</creatorcontrib><creatorcontrib>Saito, Masahico</creatorcontrib><creatorcontrib>Ohayon, Yoel P</creatorcontrib><creatorcontrib>Jonoska, Nataša</creatorcontrib><creatorcontrib>Sha, Ruojie</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janowski, Jordan</au><au>Pham, Van A B</au><au>Vecchioni, Simon</au><au>Woloszyn, Karol</au><au>Lu, Brandon</au><au>Zou, Yijia</au><au>Erkalo, Betel</au><au>Perren, Lara</au><au>Rueb, Joe</au><au>Madnick, Jesse</au><au>Mao, Chengde</au><au>Saito, Masahico</au><au>Ohayon, Yoel P</au><au>Jonoska, Nataša</au><au>Sha, Ruojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering tertiary chirality in helical biopolymers</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2024-05-07</date><risdate>2024</risdate><volume>121</volume><issue>19</issue><spage>1</spage><pages>1-</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><doi>10.1073/pnas.232199212</doi></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-05, Vol.121 (19), p.1
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_3053237555
source PMC (PubMed Central)
subjects Assemblies
Biopolymers
Chirality
Crystals
Deoxyribonucleic acid
DNA
Handedness
Mathematical models
Nanomaterials
Nanotechnology
Optical activity
Optical properties
Physical properties
Tensegrity
X-ray diffraction
title Engineering tertiary chirality in helical biopolymers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20tertiary%20chirality%20in%20helical%20biopolymers&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Janowski,%20Jordan&rft.date=2024-05-07&rft.volume=121&rft.issue=19&rft.spage=1&rft.pages=1-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.232199212&rft_dat=%3Cproquest%3E3053237555%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30532375553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053237555&rft_id=info:pmid/&rfr_iscdi=true