Loading…

Application of ANOVA in interval type-2 fuzzy logic systems for modeling the process of ceramic coating preparation in the foundry industry

The preparation of ceramic coatings is a complex process, impacted by the variability and uncertainty inherent in its operational parameters. This coating, applied to sand cores in the iron casting production of monoblocs, serves primarily to shield them from physical and chemical reactions with mol...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2024-06, Vol.132 (7-8), p.3927-3938
Main Authors: Olvera-Romero, Gerardo Daniel, Praga-Alejo, Rolando, Rodríguez-Reyes, Mario, Mancha-Molinar, Héctor, González-González, David, Vázquez-Obregón, Dagoberto, Luna-Álvarez, Jesús Salvador, de León-Delgado, Homero, Flores-Cárdenas, José
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-86d6db0db613262e0ef7cb4fe3bdca24fe91476be6752d795364979b4003d4ed3
container_end_page 3938
container_issue 7-8
container_start_page 3927
container_title International journal of advanced manufacturing technology
container_volume 132
creator Olvera-Romero, Gerardo Daniel
Praga-Alejo, Rolando
Rodríguez-Reyes, Mario
Mancha-Molinar, Héctor
González-González, David
Vázquez-Obregón, Dagoberto
Luna-Álvarez, Jesús Salvador
de León-Delgado, Homero
Flores-Cárdenas, José
description The preparation of ceramic coatings is a complex process, impacted by the variability and uncertainty inherent in its operational parameters. This coating, applied to sand cores in the iron casting production of monoblocs, serves primarily to shield them from physical and chemical reactions with molten metal that could lead to penetration. This study tackles such complexity by employing a type-2 interval fuzzy logic system (IT2 FLS), notably integrating analysis of variance (ANOVA) for statistical inference within the model. This methodology facilitates a detailed and quantitative analysis of the operational variables’ influence, enhancing both the understanding and the accuracy of the IT2 FLS model. The IT2 FLS implementation exhibited 96 % effectiveness in explaining the process variability, identifying the paint tank’s density as the most influential variable, unlike ambient temperature, which had a lesser impact. Furthermore, the IT2 FLS model not only displayed superior fit ( R 2 = 0.96 ) compared to type-1 fuzzy logic systems ( R 2 = 0.80 ) and linear regression models ( R 2 = 0.49 ), but also revealed, through cross-validation, a significant predictive capacity ( R prediction 2 = 0.86 ). These results validate the robustness of the IT2 FLS against conventional methods and highlight the novelty of integrating ANOVA to deepen the statistical analysis of the IT2 FLS model. Such an approach provides an effective tool for understanding and enhancing complex manufacturing processes, offering value to industries aiming to optimize efficiency and quality.
doi_str_mv 10.1007/s00170-024-13563-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053367392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053367392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-86d6db0db613262e0ef7cb4fe3bdca24fe91476be6752d795364979b4003d4ed3</originalsourceid><addsrcrecordid>eNp9kM1KxDAYRYMoOI6-gKuA62h-2mS6LIN_IM5G3YY2-Tp2aJuatELnFXxpM1ZwJwSSkHPPFy5Cl4xeM0rVTaCUKUooTwgTqRSEH6EFS4QggrL0GC0olysilFydorMQdhGXTK4W6Cvv-6Y2xVC7DrsK58-btxzXXVwD-M-iwcPUA-G4Gvf7CTduWxscpjBAG3DlPG6dhabutnh4B9x7ZyCEg8iAL9rIGhfd8bn30Bd-nhP1B7pyY2f9FK92DIOfztFJVTQBLn73JXq9u31ZP5Cnzf3jOn8ihis6kJW00pbUlpIJLjlQqJQpkwpEaU3B4yFjiZIlSJVyq7JUyCRTWZlQKmwCVizR1eyN3_0YIQx650bfxZFa0FQIqUTGI8VnyngXgodK975uCz9pRvWhdD2XrmPp-qd0fQiJORQi3G3B_6n_SX0DmS-G8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053367392</pqid></control><display><type>article</type><title>Application of ANOVA in interval type-2 fuzzy logic systems for modeling the process of ceramic coating preparation in the foundry industry</title><source>Springer Nature</source><creator>Olvera-Romero, Gerardo Daniel ; Praga-Alejo, Rolando ; Rodríguez-Reyes, Mario ; Mancha-Molinar, Héctor ; González-González, David ; Vázquez-Obregón, Dagoberto ; Luna-Álvarez, Jesús Salvador ; de León-Delgado, Homero ; Flores-Cárdenas, José</creator><creatorcontrib>Olvera-Romero, Gerardo Daniel ; Praga-Alejo, Rolando ; Rodríguez-Reyes, Mario ; Mancha-Molinar, Héctor ; González-González, David ; Vázquez-Obregón, Dagoberto ; Luna-Álvarez, Jesús Salvador ; de León-Delgado, Homero ; Flores-Cárdenas, José</creatorcontrib><description>The preparation of ceramic coatings is a complex process, impacted by the variability and uncertainty inherent in its operational parameters. This coating, applied to sand cores in the iron casting production of monoblocs, serves primarily to shield them from physical and chemical reactions with molten metal that could lead to penetration. This study tackles such complexity by employing a type-2 interval fuzzy logic system (IT2 FLS), notably integrating analysis of variance (ANOVA) for statistical inference within the model. This methodology facilitates a detailed and quantitative analysis of the operational variables’ influence, enhancing both the understanding and the accuracy of the IT2 FLS model. The IT2 FLS implementation exhibited 96 % effectiveness in explaining the process variability, identifying the paint tank’s density as the most influential variable, unlike ambient temperature, which had a lesser impact. Furthermore, the IT2 FLS model not only displayed superior fit ( R 2 = 0.96 ) compared to type-1 fuzzy logic systems ( R 2 = 0.80 ) and linear regression models ( R 2 = 0.49 ), but also revealed, through cross-validation, a significant predictive capacity ( R prediction 2 = 0.86 ). These results validate the robustness of the IT2 FLS against conventional methods and highlight the novelty of integrating ANOVA to deepen the statistical analysis of the IT2 FLS model. Such an approach provides an effective tool for understanding and enhancing complex manufacturing processes, offering value to industries aiming to optimize efficiency and quality.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-13563-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Ambient temperature ; CAE) and Design ; Ceramic coatings ; Chemical reactions ; Complexity ; Computer-Aided Engineering (CAD ; Engineering ; Fuzzy logic ; Fuzzy systems ; Industrial and Production Engineering ; Liquid metals ; Mechanical Engineering ; Media Management ; Original Article ; Regression models ; Sand casting ; Statistical analysis ; Statistical inference ; Variability ; Variance analysis</subject><ispartof>International journal of advanced manufacturing technology, 2024-06, Vol.132 (7-8), p.3927-3938</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-86d6db0db613262e0ef7cb4fe3bdca24fe91476be6752d795364979b4003d4ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Olvera-Romero, Gerardo Daniel</creatorcontrib><creatorcontrib>Praga-Alejo, Rolando</creatorcontrib><creatorcontrib>Rodríguez-Reyes, Mario</creatorcontrib><creatorcontrib>Mancha-Molinar, Héctor</creatorcontrib><creatorcontrib>González-González, David</creatorcontrib><creatorcontrib>Vázquez-Obregón, Dagoberto</creatorcontrib><creatorcontrib>Luna-Álvarez, Jesús Salvador</creatorcontrib><creatorcontrib>de León-Delgado, Homero</creatorcontrib><creatorcontrib>Flores-Cárdenas, José</creatorcontrib><title>Application of ANOVA in interval type-2 fuzzy logic systems for modeling the process of ceramic coating preparation in the foundry industry</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The preparation of ceramic coatings is a complex process, impacted by the variability and uncertainty inherent in its operational parameters. This coating, applied to sand cores in the iron casting production of monoblocs, serves primarily to shield them from physical and chemical reactions with molten metal that could lead to penetration. This study tackles such complexity by employing a type-2 interval fuzzy logic system (IT2 FLS), notably integrating analysis of variance (ANOVA) for statistical inference within the model. This methodology facilitates a detailed and quantitative analysis of the operational variables’ influence, enhancing both the understanding and the accuracy of the IT2 FLS model. The IT2 FLS implementation exhibited 96 % effectiveness in explaining the process variability, identifying the paint tank’s density as the most influential variable, unlike ambient temperature, which had a lesser impact. Furthermore, the IT2 FLS model not only displayed superior fit ( R 2 = 0.96 ) compared to type-1 fuzzy logic systems ( R 2 = 0.80 ) and linear regression models ( R 2 = 0.49 ), but also revealed, through cross-validation, a significant predictive capacity ( R prediction 2 = 0.86 ). These results validate the robustness of the IT2 FLS against conventional methods and highlight the novelty of integrating ANOVA to deepen the statistical analysis of the IT2 FLS model. Such an approach provides an effective tool for understanding and enhancing complex manufacturing processes, offering value to industries aiming to optimize efficiency and quality.</description><subject>Ambient temperature</subject><subject>CAE) and Design</subject><subject>Ceramic coatings</subject><subject>Chemical reactions</subject><subject>Complexity</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Industrial and Production Engineering</subject><subject>Liquid metals</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Regression models</subject><subject>Sand casting</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Variability</subject><subject>Variance analysis</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAYRYMoOI6-gKuA62h-2mS6LIN_IM5G3YY2-Tp2aJuatELnFXxpM1ZwJwSSkHPPFy5Cl4xeM0rVTaCUKUooTwgTqRSEH6EFS4QggrL0GC0olysilFydorMQdhGXTK4W6Cvv-6Y2xVC7DrsK58-btxzXXVwD-M-iwcPUA-G4Gvf7CTduWxscpjBAG3DlPG6dhabutnh4B9x7ZyCEg8iAL9rIGhfd8bn30Bd-nhP1B7pyY2f9FK92DIOfztFJVTQBLn73JXq9u31ZP5Cnzf3jOn8ihis6kJW00pbUlpIJLjlQqJQpkwpEaU3B4yFjiZIlSJVyq7JUyCRTWZlQKmwCVizR1eyN3_0YIQx650bfxZFa0FQIqUTGI8VnyngXgodK975uCz9pRvWhdD2XrmPp-qd0fQiJORQi3G3B_6n_SX0DmS-G8g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Olvera-Romero, Gerardo Daniel</creator><creator>Praga-Alejo, Rolando</creator><creator>Rodríguez-Reyes, Mario</creator><creator>Mancha-Molinar, Héctor</creator><creator>González-González, David</creator><creator>Vázquez-Obregón, Dagoberto</creator><creator>Luna-Álvarez, Jesús Salvador</creator><creator>de León-Delgado, Homero</creator><creator>Flores-Cárdenas, José</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Application of ANOVA in interval type-2 fuzzy logic systems for modeling the process of ceramic coating preparation in the foundry industry</title><author>Olvera-Romero, Gerardo Daniel ; Praga-Alejo, Rolando ; Rodríguez-Reyes, Mario ; Mancha-Molinar, Héctor ; González-González, David ; Vázquez-Obregón, Dagoberto ; Luna-Álvarez, Jesús Salvador ; de León-Delgado, Homero ; Flores-Cárdenas, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-86d6db0db613262e0ef7cb4fe3bdca24fe91476be6752d795364979b4003d4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambient temperature</topic><topic>CAE) and Design</topic><topic>Ceramic coatings</topic><topic>Chemical reactions</topic><topic>Complexity</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Industrial and Production Engineering</topic><topic>Liquid metals</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Regression models</topic><topic>Sand casting</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Variability</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olvera-Romero, Gerardo Daniel</creatorcontrib><creatorcontrib>Praga-Alejo, Rolando</creatorcontrib><creatorcontrib>Rodríguez-Reyes, Mario</creatorcontrib><creatorcontrib>Mancha-Molinar, Héctor</creatorcontrib><creatorcontrib>González-González, David</creatorcontrib><creatorcontrib>Vázquez-Obregón, Dagoberto</creatorcontrib><creatorcontrib>Luna-Álvarez, Jesús Salvador</creatorcontrib><creatorcontrib>de León-Delgado, Homero</creatorcontrib><creatorcontrib>Flores-Cárdenas, José</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olvera-Romero, Gerardo Daniel</au><au>Praga-Alejo, Rolando</au><au>Rodríguez-Reyes, Mario</au><au>Mancha-Molinar, Héctor</au><au>González-González, David</au><au>Vázquez-Obregón, Dagoberto</au><au>Luna-Álvarez, Jesús Salvador</au><au>de León-Delgado, Homero</au><au>Flores-Cárdenas, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of ANOVA in interval type-2 fuzzy logic systems for modeling the process of ceramic coating preparation in the foundry industry</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>132</volume><issue>7-8</issue><spage>3927</spage><epage>3938</epage><pages>3927-3938</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The preparation of ceramic coatings is a complex process, impacted by the variability and uncertainty inherent in its operational parameters. This coating, applied to sand cores in the iron casting production of monoblocs, serves primarily to shield them from physical and chemical reactions with molten metal that could lead to penetration. This study tackles such complexity by employing a type-2 interval fuzzy logic system (IT2 FLS), notably integrating analysis of variance (ANOVA) for statistical inference within the model. This methodology facilitates a detailed and quantitative analysis of the operational variables’ influence, enhancing both the understanding and the accuracy of the IT2 FLS model. The IT2 FLS implementation exhibited 96 % effectiveness in explaining the process variability, identifying the paint tank’s density as the most influential variable, unlike ambient temperature, which had a lesser impact. Furthermore, the IT2 FLS model not only displayed superior fit ( R 2 = 0.96 ) compared to type-1 fuzzy logic systems ( R 2 = 0.80 ) and linear regression models ( R 2 = 0.49 ), but also revealed, through cross-validation, a significant predictive capacity ( R prediction 2 = 0.86 ). These results validate the robustness of the IT2 FLS against conventional methods and highlight the novelty of integrating ANOVA to deepen the statistical analysis of the IT2 FLS model. Such an approach provides an effective tool for understanding and enhancing complex manufacturing processes, offering value to industries aiming to optimize efficiency and quality.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-13563-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2024-06, Vol.132 (7-8), p.3927-3938
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_3053367392
source Springer Nature
subjects Ambient temperature
CAE) and Design
Ceramic coatings
Chemical reactions
Complexity
Computer-Aided Engineering (CAD
Engineering
Fuzzy logic
Fuzzy systems
Industrial and Production Engineering
Liquid metals
Mechanical Engineering
Media Management
Original Article
Regression models
Sand casting
Statistical analysis
Statistical inference
Variability
Variance analysis
title Application of ANOVA in interval type-2 fuzzy logic systems for modeling the process of ceramic coating preparation in the foundry industry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20ANOVA%20in%20interval%20type-2%20fuzzy%20logic%20systems%20for%20modeling%20the%20process%20of%20ceramic%20coating%20preparation%20in%20the%20foundry%20industry&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Olvera-Romero,%20Gerardo%20Daniel&rft.date=2024-06-01&rft.volume=132&rft.issue=7-8&rft.spage=3927&rft.epage=3938&rft.pages=3927-3938&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-13563-2&rft_dat=%3Cproquest_cross%3E3053367392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-86d6db0db613262e0ef7cb4fe3bdca24fe91476be6752d795364979b4003d4ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053367392&rft_id=info:pmid/&rfr_iscdi=true