Loading…
Application of ANOVA in interval type-2 fuzzy logic systems for modeling the process of ceramic coating preparation in the foundry industry
The preparation of ceramic coatings is a complex process, impacted by the variability and uncertainty inherent in its operational parameters. This coating, applied to sand cores in the iron casting production of monoblocs, serves primarily to shield them from physical and chemical reactions with mol...
Saved in:
Published in: | International journal of advanced manufacturing technology 2024-06, Vol.132 (7-8), p.3927-3938 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-86d6db0db613262e0ef7cb4fe3bdca24fe91476be6752d795364979b4003d4ed3 |
container_end_page | 3938 |
container_issue | 7-8 |
container_start_page | 3927 |
container_title | International journal of advanced manufacturing technology |
container_volume | 132 |
creator | Olvera-Romero, Gerardo Daniel Praga-Alejo, Rolando Rodríguez-Reyes, Mario Mancha-Molinar, Héctor González-González, David Vázquez-Obregón, Dagoberto Luna-Álvarez, Jesús Salvador de León-Delgado, Homero Flores-Cárdenas, José |
description | The preparation of ceramic coatings is a complex process, impacted by the variability and uncertainty inherent in its operational parameters. This coating, applied to sand cores in the iron casting production of monoblocs, serves primarily to shield them from physical and chemical reactions with molten metal that could lead to penetration. This study tackles such complexity by employing a type-2 interval fuzzy logic system (IT2 FLS), notably integrating analysis of variance (ANOVA) for statistical inference within the model. This methodology facilitates a detailed and quantitative analysis of the operational variables’ influence, enhancing both the understanding and the accuracy of the IT2 FLS model. The IT2 FLS implementation exhibited
96
%
effectiveness in explaining the process variability, identifying the paint tank’s density as the most influential variable, unlike ambient temperature, which had a lesser impact. Furthermore, the IT2 FLS model not only displayed superior fit (
R
2
=
0.96
) compared to type-1 fuzzy logic systems (
R
2
=
0.80
) and linear regression models (
R
2
=
0.49
), but also revealed, through cross-validation, a significant predictive capacity (
R
prediction
2
=
0.86
). These results validate the robustness of the IT2 FLS against conventional methods and highlight the novelty of integrating ANOVA to deepen the statistical analysis of the IT2 FLS model. Such an approach provides an effective tool for understanding and enhancing complex manufacturing processes, offering value to industries aiming to optimize efficiency and quality. |
doi_str_mv | 10.1007/s00170-024-13563-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053367392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053367392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-86d6db0db613262e0ef7cb4fe3bdca24fe91476be6752d795364979b4003d4ed3</originalsourceid><addsrcrecordid>eNp9kM1KxDAYRYMoOI6-gKuA62h-2mS6LIN_IM5G3YY2-Tp2aJuatELnFXxpM1ZwJwSSkHPPFy5Cl4xeM0rVTaCUKUooTwgTqRSEH6EFS4QggrL0GC0olysilFydorMQdhGXTK4W6Cvv-6Y2xVC7DrsK58-btxzXXVwD-M-iwcPUA-G4Gvf7CTduWxscpjBAG3DlPG6dhabutnh4B9x7ZyCEg8iAL9rIGhfd8bn30Bd-nhP1B7pyY2f9FK92DIOfztFJVTQBLn73JXq9u31ZP5Cnzf3jOn8ihis6kJW00pbUlpIJLjlQqJQpkwpEaU3B4yFjiZIlSJVyq7JUyCRTWZlQKmwCVizR1eyN3_0YIQx650bfxZFa0FQIqUTGI8VnyngXgodK975uCz9pRvWhdD2XrmPp-qd0fQiJORQi3G3B_6n_SX0DmS-G8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053367392</pqid></control><display><type>article</type><title>Application of ANOVA in interval type-2 fuzzy logic systems for modeling the process of ceramic coating preparation in the foundry industry</title><source>Springer Nature</source><creator>Olvera-Romero, Gerardo Daniel ; Praga-Alejo, Rolando ; Rodríguez-Reyes, Mario ; Mancha-Molinar, Héctor ; González-González, David ; Vázquez-Obregón, Dagoberto ; Luna-Álvarez, Jesús Salvador ; de León-Delgado, Homero ; Flores-Cárdenas, José</creator><creatorcontrib>Olvera-Romero, Gerardo Daniel ; Praga-Alejo, Rolando ; Rodríguez-Reyes, Mario ; Mancha-Molinar, Héctor ; González-González, David ; Vázquez-Obregón, Dagoberto ; Luna-Álvarez, Jesús Salvador ; de León-Delgado, Homero ; Flores-Cárdenas, José</creatorcontrib><description>The preparation of ceramic coatings is a complex process, impacted by the variability and uncertainty inherent in its operational parameters. This coating, applied to sand cores in the iron casting production of monoblocs, serves primarily to shield them from physical and chemical reactions with molten metal that could lead to penetration. This study tackles such complexity by employing a type-2 interval fuzzy logic system (IT2 FLS), notably integrating analysis of variance (ANOVA) for statistical inference within the model. This methodology facilitates a detailed and quantitative analysis of the operational variables’ influence, enhancing both the understanding and the accuracy of the IT2 FLS model. The IT2 FLS implementation exhibited
96
%
effectiveness in explaining the process variability, identifying the paint tank’s density as the most influential variable, unlike ambient temperature, which had a lesser impact. Furthermore, the IT2 FLS model not only displayed superior fit (
R
2
=
0.96
) compared to type-1 fuzzy logic systems (
R
2
=
0.80
) and linear regression models (
R
2
=
0.49
), but also revealed, through cross-validation, a significant predictive capacity (
R
prediction
2
=
0.86
). These results validate the robustness of the IT2 FLS against conventional methods and highlight the novelty of integrating ANOVA to deepen the statistical analysis of the IT2 FLS model. Such an approach provides an effective tool for understanding and enhancing complex manufacturing processes, offering value to industries aiming to optimize efficiency and quality.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-13563-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Ambient temperature ; CAE) and Design ; Ceramic coatings ; Chemical reactions ; Complexity ; Computer-Aided Engineering (CAD ; Engineering ; Fuzzy logic ; Fuzzy systems ; Industrial and Production Engineering ; Liquid metals ; Mechanical Engineering ; Media Management ; Original Article ; Regression models ; Sand casting ; Statistical analysis ; Statistical inference ; Variability ; Variance analysis</subject><ispartof>International journal of advanced manufacturing technology, 2024-06, Vol.132 (7-8), p.3927-3938</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-86d6db0db613262e0ef7cb4fe3bdca24fe91476be6752d795364979b4003d4ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Olvera-Romero, Gerardo Daniel</creatorcontrib><creatorcontrib>Praga-Alejo, Rolando</creatorcontrib><creatorcontrib>Rodríguez-Reyes, Mario</creatorcontrib><creatorcontrib>Mancha-Molinar, Héctor</creatorcontrib><creatorcontrib>González-González, David</creatorcontrib><creatorcontrib>Vázquez-Obregón, Dagoberto</creatorcontrib><creatorcontrib>Luna-Álvarez, Jesús Salvador</creatorcontrib><creatorcontrib>de León-Delgado, Homero</creatorcontrib><creatorcontrib>Flores-Cárdenas, José</creatorcontrib><title>Application of ANOVA in interval type-2 fuzzy logic systems for modeling the process of ceramic coating preparation in the foundry industry</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The preparation of ceramic coatings is a complex process, impacted by the variability and uncertainty inherent in its operational parameters. This coating, applied to sand cores in the iron casting production of monoblocs, serves primarily to shield them from physical and chemical reactions with molten metal that could lead to penetration. This study tackles such complexity by employing a type-2 interval fuzzy logic system (IT2 FLS), notably integrating analysis of variance (ANOVA) for statistical inference within the model. This methodology facilitates a detailed and quantitative analysis of the operational variables’ influence, enhancing both the understanding and the accuracy of the IT2 FLS model. The IT2 FLS implementation exhibited
96
%
effectiveness in explaining the process variability, identifying the paint tank’s density as the most influential variable, unlike ambient temperature, which had a lesser impact. Furthermore, the IT2 FLS model not only displayed superior fit (
R
2
=
0.96
) compared to type-1 fuzzy logic systems (
R
2
=
0.80
) and linear regression models (
R
2
=
0.49
), but also revealed, through cross-validation, a significant predictive capacity (
R
prediction
2
=
0.86
). These results validate the robustness of the IT2 FLS against conventional methods and highlight the novelty of integrating ANOVA to deepen the statistical analysis of the IT2 FLS model. Such an approach provides an effective tool for understanding and enhancing complex manufacturing processes, offering value to industries aiming to optimize efficiency and quality.</description><subject>Ambient temperature</subject><subject>CAE) and Design</subject><subject>Ceramic coatings</subject><subject>Chemical reactions</subject><subject>Complexity</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Industrial and Production Engineering</subject><subject>Liquid metals</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Regression models</subject><subject>Sand casting</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Variability</subject><subject>Variance analysis</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAYRYMoOI6-gKuA62h-2mS6LIN_IM5G3YY2-Tp2aJuatELnFXxpM1ZwJwSSkHPPFy5Cl4xeM0rVTaCUKUooTwgTqRSEH6EFS4QggrL0GC0olysilFydorMQdhGXTK4W6Cvv-6Y2xVC7DrsK58-btxzXXVwD-M-iwcPUA-G4Gvf7CTduWxscpjBAG3DlPG6dhabutnh4B9x7ZyCEg8iAL9rIGhfd8bn30Bd-nhP1B7pyY2f9FK92DIOfztFJVTQBLn73JXq9u31ZP5Cnzf3jOn8ihis6kJW00pbUlpIJLjlQqJQpkwpEaU3B4yFjiZIlSJVyq7JUyCRTWZlQKmwCVizR1eyN3_0YIQx650bfxZFa0FQIqUTGI8VnyngXgodK975uCz9pRvWhdD2XrmPp-qd0fQiJORQi3G3B_6n_SX0DmS-G8g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Olvera-Romero, Gerardo Daniel</creator><creator>Praga-Alejo, Rolando</creator><creator>Rodríguez-Reyes, Mario</creator><creator>Mancha-Molinar, Héctor</creator><creator>González-González, David</creator><creator>Vázquez-Obregón, Dagoberto</creator><creator>Luna-Álvarez, Jesús Salvador</creator><creator>de León-Delgado, Homero</creator><creator>Flores-Cárdenas, José</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Application of ANOVA in interval type-2 fuzzy logic systems for modeling the process of ceramic coating preparation in the foundry industry</title><author>Olvera-Romero, Gerardo Daniel ; Praga-Alejo, Rolando ; Rodríguez-Reyes, Mario ; Mancha-Molinar, Héctor ; González-González, David ; Vázquez-Obregón, Dagoberto ; Luna-Álvarez, Jesús Salvador ; de León-Delgado, Homero ; Flores-Cárdenas, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-86d6db0db613262e0ef7cb4fe3bdca24fe91476be6752d795364979b4003d4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambient temperature</topic><topic>CAE) and Design</topic><topic>Ceramic coatings</topic><topic>Chemical reactions</topic><topic>Complexity</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Industrial and Production Engineering</topic><topic>Liquid metals</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Regression models</topic><topic>Sand casting</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Variability</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olvera-Romero, Gerardo Daniel</creatorcontrib><creatorcontrib>Praga-Alejo, Rolando</creatorcontrib><creatorcontrib>Rodríguez-Reyes, Mario</creatorcontrib><creatorcontrib>Mancha-Molinar, Héctor</creatorcontrib><creatorcontrib>González-González, David</creatorcontrib><creatorcontrib>Vázquez-Obregón, Dagoberto</creatorcontrib><creatorcontrib>Luna-Álvarez, Jesús Salvador</creatorcontrib><creatorcontrib>de León-Delgado, Homero</creatorcontrib><creatorcontrib>Flores-Cárdenas, José</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olvera-Romero, Gerardo Daniel</au><au>Praga-Alejo, Rolando</au><au>Rodríguez-Reyes, Mario</au><au>Mancha-Molinar, Héctor</au><au>González-González, David</au><au>Vázquez-Obregón, Dagoberto</au><au>Luna-Álvarez, Jesús Salvador</au><au>de León-Delgado, Homero</au><au>Flores-Cárdenas, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of ANOVA in interval type-2 fuzzy logic systems for modeling the process of ceramic coating preparation in the foundry industry</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>132</volume><issue>7-8</issue><spage>3927</spage><epage>3938</epage><pages>3927-3938</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The preparation of ceramic coatings is a complex process, impacted by the variability and uncertainty inherent in its operational parameters. This coating, applied to sand cores in the iron casting production of monoblocs, serves primarily to shield them from physical and chemical reactions with molten metal that could lead to penetration. This study tackles such complexity by employing a type-2 interval fuzzy logic system (IT2 FLS), notably integrating analysis of variance (ANOVA) for statistical inference within the model. This methodology facilitates a detailed and quantitative analysis of the operational variables’ influence, enhancing both the understanding and the accuracy of the IT2 FLS model. The IT2 FLS implementation exhibited
96
%
effectiveness in explaining the process variability, identifying the paint tank’s density as the most influential variable, unlike ambient temperature, which had a lesser impact. Furthermore, the IT2 FLS model not only displayed superior fit (
R
2
=
0.96
) compared to type-1 fuzzy logic systems (
R
2
=
0.80
) and linear regression models (
R
2
=
0.49
), but also revealed, through cross-validation, a significant predictive capacity (
R
prediction
2
=
0.86
). These results validate the robustness of the IT2 FLS against conventional methods and highlight the novelty of integrating ANOVA to deepen the statistical analysis of the IT2 FLS model. Such an approach provides an effective tool for understanding and enhancing complex manufacturing processes, offering value to industries aiming to optimize efficiency and quality.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-13563-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2024-06, Vol.132 (7-8), p.3927-3938 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_3053367392 |
source | Springer Nature |
subjects | Ambient temperature CAE) and Design Ceramic coatings Chemical reactions Complexity Computer-Aided Engineering (CAD Engineering Fuzzy logic Fuzzy systems Industrial and Production Engineering Liquid metals Mechanical Engineering Media Management Original Article Regression models Sand casting Statistical analysis Statistical inference Variability Variance analysis |
title | Application of ANOVA in interval type-2 fuzzy logic systems for modeling the process of ceramic coating preparation in the foundry industry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20ANOVA%20in%20interval%20type-2%20fuzzy%20logic%20systems%20for%20modeling%20the%20process%20of%20ceramic%20coating%20preparation%20in%20the%20foundry%20industry&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Olvera-Romero,%20Gerardo%20Daniel&rft.date=2024-06-01&rft.volume=132&rft.issue=7-8&rft.spage=3927&rft.epage=3938&rft.pages=3927-3938&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-13563-2&rft_dat=%3Cproquest_cross%3E3053367392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-86d6db0db613262e0ef7cb4fe3bdca24fe91476be6752d795364979b4003d4ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053367392&rft_id=info:pmid/&rfr_iscdi=true |