Loading…

3D-printed titanium-aluminum-vanadium alloy produced at various laser powers: evaluation of microstructures and mechanical characteristics

Achieving 3D-printed Ti6Al4V alloy with customized microstructures and mechanical characteristics remains challenging, wherein the processing efficiency mainly depends on the laser energy, mass deposition rate, and duration. Based on these factors, a simple and eco-friendly direct laser metal deposi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2024-06, Vol.132 (7-8), p.3671-3681
Main Authors: Salim, Ali Aqeel, Bakhtiar, Hazri, Ghoshal, Sib Krishna, Aziz, Muhammad Safwan Abd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-8506ba65e18490d7fafabda9c986ad68927f6f46d815fb047c06f878e9c01d9b3
container_end_page 3681
container_issue 7-8
container_start_page 3671
container_title International journal of advanced manufacturing technology
container_volume 132
creator Salim, Ali Aqeel
Bakhtiar, Hazri
Ghoshal, Sib Krishna
Aziz, Muhammad Safwan Abd
description Achieving 3D-printed Ti6Al4V alloy with customized microstructures and mechanical characteristics remains challenging, wherein the processing efficiency mainly depends on the laser energy, mass deposition rate, and duration. Based on these factors, a simple and eco-friendly direct laser metal deposition approach was followed to get 3D-printed Ti6Al4V alloys at various laser powers (300–500 W). Herein, a 1.5-kW continuous fiber laser with a wavelength of 1080 nm was used to create a stable and dense alloy. The obtained 3D-printed specimens were characterized to assess the laser power–dependent microstructures, compositions, microhardness, grain sizes, color filling, and dimensional stability in terms of height/width. FESEM micrographs of the obtained alloys revealed the existence of porous spherical grains of mean size in the range of 50–81 μm. The alloy deposited at 300 W and 0.495 mm/s scan speed displayed the maximum hardness (excellent bong strength) value of 859.2 HV 0.5 devoid of any crack and porosity. XRD patterns of the alloy revealed the existence of α + β martensitic phase transformation which is responsible for the marginal increase of hardness. It is asserted that the proposed 3D-printed Ti6Al4V alloy can be beneficial for the development of efficient structural parts desired for diverse applications.
doi_str_mv 10.1007/s00170-024-13616-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053367425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053367425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-8506ba65e18490d7fafabda9c986ad68927f6f46d815fb047c06f878e9c01d9b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczTZ7Gaz3qR-QsGLnsNsPjRlP2qSrfQv-KtNreDN0wzD884wD0LnjF4ySuurSCmrKaFFSRgXTBBxgGas5JxwyqpDNKOFkITXQh6jkxhXGc-UnKEvfkvWwQ_JGpx8gsFPPYFu6v2Qmw0MYPIEQ9eNW7wOo5l0JiHhDQQ_ThF3EG3A6_HThniN7SZnIflxwKPDvddhjClMOk3BRgyDwb3V7_mKhg7nJoBONviYvI6n6MhBF-3Zb52j1_u7l8UjWT4_PC1ulkRzViYiKypaEJVlsmyoqR04aA00upECjJBNUTvhSmEkq1xLy1pT4WQtbaMpM03L5-hivze_8zHZmNRqnMKQTypOK85FXRZVpoo9tXshButU1tRD2CpG1c652jtX2bn6ca5EDvF9KO6cvtnwt_qf1Dc3g4hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053367425</pqid></control><display><type>article</type><title>3D-printed titanium-aluminum-vanadium alloy produced at various laser powers: evaluation of microstructures and mechanical characteristics</title><source>Springer Nature</source><creator>Salim, Ali Aqeel ; Bakhtiar, Hazri ; Ghoshal, Sib Krishna ; Aziz, Muhammad Safwan Abd</creator><creatorcontrib>Salim, Ali Aqeel ; Bakhtiar, Hazri ; Ghoshal, Sib Krishna ; Aziz, Muhammad Safwan Abd</creatorcontrib><description>Achieving 3D-printed Ti6Al4V alloy with customized microstructures and mechanical characteristics remains challenging, wherein the processing efficiency mainly depends on the laser energy, mass deposition rate, and duration. Based on these factors, a simple and eco-friendly direct laser metal deposition approach was followed to get 3D-printed Ti6Al4V alloys at various laser powers (300–500 W). Herein, a 1.5-kW continuous fiber laser with a wavelength of 1080 nm was used to create a stable and dense alloy. The obtained 3D-printed specimens were characterized to assess the laser power–dependent microstructures, compositions, microhardness, grain sizes, color filling, and dimensional stability in terms of height/width. FESEM micrographs of the obtained alloys revealed the existence of porous spherical grains of mean size in the range of 50–81 μm. The alloy deposited at 300 W and 0.495 mm/s scan speed displayed the maximum hardness (excellent bong strength) value of 859.2 HV 0.5 devoid of any crack and porosity. XRD patterns of the alloy revealed the existence of α + β martensitic phase transformation which is responsible for the marginal increase of hardness. It is asserted that the proposed 3D-printed Ti6Al4V alloy can be beneficial for the development of efficient structural parts desired for diverse applications.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-13616-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Alloys ; CAE) and Design ; Computer-Aided Engineering (CAD ; Continuous fibers ; Dimensional stability ; Engineering ; Fiber lasers ; Grain size ; Industrial and Production Engineering ; Laser deposition ; Lasers ; Mechanical Engineering ; Mechanical properties ; Media Management ; Microhardness ; Microstructure ; Original Article ; Phase transitions ; Photomicrographs ; Titanium base alloys</subject><ispartof>International journal of advanced manufacturing technology, 2024-06, Vol.132 (7-8), p.3671-3681</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-8506ba65e18490d7fafabda9c986ad68927f6f46d815fb047c06f878e9c01d9b3</cites><orcidid>0000-0002-2801-9673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Salim, Ali Aqeel</creatorcontrib><creatorcontrib>Bakhtiar, Hazri</creatorcontrib><creatorcontrib>Ghoshal, Sib Krishna</creatorcontrib><creatorcontrib>Aziz, Muhammad Safwan Abd</creatorcontrib><title>3D-printed titanium-aluminum-vanadium alloy produced at various laser powers: evaluation of microstructures and mechanical characteristics</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Achieving 3D-printed Ti6Al4V alloy with customized microstructures and mechanical characteristics remains challenging, wherein the processing efficiency mainly depends on the laser energy, mass deposition rate, and duration. Based on these factors, a simple and eco-friendly direct laser metal deposition approach was followed to get 3D-printed Ti6Al4V alloys at various laser powers (300–500 W). Herein, a 1.5-kW continuous fiber laser with a wavelength of 1080 nm was used to create a stable and dense alloy. The obtained 3D-printed specimens were characterized to assess the laser power–dependent microstructures, compositions, microhardness, grain sizes, color filling, and dimensional stability in terms of height/width. FESEM micrographs of the obtained alloys revealed the existence of porous spherical grains of mean size in the range of 50–81 μm. The alloy deposited at 300 W and 0.495 mm/s scan speed displayed the maximum hardness (excellent bong strength) value of 859.2 HV 0.5 devoid of any crack and porosity. XRD patterns of the alloy revealed the existence of α + β martensitic phase transformation which is responsible for the marginal increase of hardness. It is asserted that the proposed 3D-printed Ti6Al4V alloy can be beneficial for the development of efficient structural parts desired for diverse applications.</description><subject>Alloys</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Continuous fibers</subject><subject>Dimensional stability</subject><subject>Engineering</subject><subject>Fiber lasers</subject><subject>Grain size</subject><subject>Industrial and Production Engineering</subject><subject>Laser deposition</subject><subject>Lasers</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Original Article</subject><subject>Phase transitions</subject><subject>Photomicrographs</subject><subject>Titanium base alloys</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczTZ7Gaz3qR-QsGLnsNsPjRlP2qSrfQv-KtNreDN0wzD884wD0LnjF4ySuurSCmrKaFFSRgXTBBxgGas5JxwyqpDNKOFkITXQh6jkxhXGc-UnKEvfkvWwQ_JGpx8gsFPPYFu6v2Qmw0MYPIEQ9eNW7wOo5l0JiHhDQQ_ThF3EG3A6_HThniN7SZnIflxwKPDvddhjClMOk3BRgyDwb3V7_mKhg7nJoBONviYvI6n6MhBF-3Zb52j1_u7l8UjWT4_PC1ulkRzViYiKypaEJVlsmyoqR04aA00upECjJBNUTvhSmEkq1xLy1pT4WQtbaMpM03L5-hivze_8zHZmNRqnMKQTypOK85FXRZVpoo9tXshButU1tRD2CpG1c652jtX2bn6ca5EDvF9KO6cvtnwt_qf1Dc3g4hg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Salim, Ali Aqeel</creator><creator>Bakhtiar, Hazri</creator><creator>Ghoshal, Sib Krishna</creator><creator>Aziz, Muhammad Safwan Abd</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2801-9673</orcidid></search><sort><creationdate>20240601</creationdate><title>3D-printed titanium-aluminum-vanadium alloy produced at various laser powers: evaluation of microstructures and mechanical characteristics</title><author>Salim, Ali Aqeel ; Bakhtiar, Hazri ; Ghoshal, Sib Krishna ; Aziz, Muhammad Safwan Abd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-8506ba65e18490d7fafabda9c986ad68927f6f46d815fb047c06f878e9c01d9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Continuous fibers</topic><topic>Dimensional stability</topic><topic>Engineering</topic><topic>Fiber lasers</topic><topic>Grain size</topic><topic>Industrial and Production Engineering</topic><topic>Laser deposition</topic><topic>Lasers</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Original Article</topic><topic>Phase transitions</topic><topic>Photomicrographs</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salim, Ali Aqeel</creatorcontrib><creatorcontrib>Bakhtiar, Hazri</creatorcontrib><creatorcontrib>Ghoshal, Sib Krishna</creatorcontrib><creatorcontrib>Aziz, Muhammad Safwan Abd</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salim, Ali Aqeel</au><au>Bakhtiar, Hazri</au><au>Ghoshal, Sib Krishna</au><au>Aziz, Muhammad Safwan Abd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-printed titanium-aluminum-vanadium alloy produced at various laser powers: evaluation of microstructures and mechanical characteristics</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>132</volume><issue>7-8</issue><spage>3671</spage><epage>3681</epage><pages>3671-3681</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Achieving 3D-printed Ti6Al4V alloy with customized microstructures and mechanical characteristics remains challenging, wherein the processing efficiency mainly depends on the laser energy, mass deposition rate, and duration. Based on these factors, a simple and eco-friendly direct laser metal deposition approach was followed to get 3D-printed Ti6Al4V alloys at various laser powers (300–500 W). Herein, a 1.5-kW continuous fiber laser with a wavelength of 1080 nm was used to create a stable and dense alloy. The obtained 3D-printed specimens were characterized to assess the laser power–dependent microstructures, compositions, microhardness, grain sizes, color filling, and dimensional stability in terms of height/width. FESEM micrographs of the obtained alloys revealed the existence of porous spherical grains of mean size in the range of 50–81 μm. The alloy deposited at 300 W and 0.495 mm/s scan speed displayed the maximum hardness (excellent bong strength) value of 859.2 HV 0.5 devoid of any crack and porosity. XRD patterns of the alloy revealed the existence of α + β martensitic phase transformation which is responsible for the marginal increase of hardness. It is asserted that the proposed 3D-printed Ti6Al4V alloy can be beneficial for the development of efficient structural parts desired for diverse applications.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-13616-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2801-9673</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2024-06, Vol.132 (7-8), p.3671-3681
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_3053367425
source Springer Nature
subjects Alloys
CAE) and Design
Computer-Aided Engineering (CAD
Continuous fibers
Dimensional stability
Engineering
Fiber lasers
Grain size
Industrial and Production Engineering
Laser deposition
Lasers
Mechanical Engineering
Mechanical properties
Media Management
Microhardness
Microstructure
Original Article
Phase transitions
Photomicrographs
Titanium base alloys
title 3D-printed titanium-aluminum-vanadium alloy produced at various laser powers: evaluation of microstructures and mechanical characteristics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-printed%20titanium-aluminum-vanadium%20alloy%20produced%20at%20various%20laser%20powers:%20evaluation%20of%20microstructures%20and%20mechanical%20characteristics&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Salim,%20Ali%20Aqeel&rft.date=2024-06-01&rft.volume=132&rft.issue=7-8&rft.spage=3671&rft.epage=3681&rft.pages=3671-3681&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-13616-6&rft_dat=%3Cproquest_cross%3E3053367425%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-8506ba65e18490d7fafabda9c986ad68927f6f46d815fb047c06f878e9c01d9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053367425&rft_id=info:pmid/&rfr_iscdi=true