Loading…
3D-printed titanium-aluminum-vanadium alloy produced at various laser powers: evaluation of microstructures and mechanical characteristics
Achieving 3D-printed Ti6Al4V alloy with customized microstructures and mechanical characteristics remains challenging, wherein the processing efficiency mainly depends on the laser energy, mass deposition rate, and duration. Based on these factors, a simple and eco-friendly direct laser metal deposi...
Saved in:
Published in: | International journal of advanced manufacturing technology 2024-06, Vol.132 (7-8), p.3671-3681 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-8506ba65e18490d7fafabda9c986ad68927f6f46d815fb047c06f878e9c01d9b3 |
container_end_page | 3681 |
container_issue | 7-8 |
container_start_page | 3671 |
container_title | International journal of advanced manufacturing technology |
container_volume | 132 |
creator | Salim, Ali Aqeel Bakhtiar, Hazri Ghoshal, Sib Krishna Aziz, Muhammad Safwan Abd |
description | Achieving 3D-printed Ti6Al4V alloy with customized microstructures and mechanical characteristics remains challenging, wherein the processing efficiency mainly depends on the laser energy, mass deposition rate, and duration. Based on these factors, a simple and eco-friendly direct laser metal deposition approach was followed to get 3D-printed Ti6Al4V alloys at various laser powers (300–500 W). Herein, a 1.5-kW continuous fiber laser with a wavelength of 1080 nm was used to create a stable and dense alloy. The obtained 3D-printed specimens were characterized to assess the laser power–dependent microstructures, compositions, microhardness, grain sizes, color filling, and dimensional stability in terms of height/width. FESEM micrographs of the obtained alloys revealed the existence of porous spherical grains of mean size in the range of 50–81 μm. The alloy deposited at 300 W and 0.495 mm/s scan speed displayed the maximum hardness (excellent bong strength) value of 859.2 HV
0.5
devoid of any crack and porosity. XRD patterns of the alloy revealed the existence of α + β martensitic phase transformation which is responsible for the marginal increase of hardness. It is asserted that the proposed 3D-printed Ti6Al4V alloy can be beneficial for the development of efficient structural parts desired for diverse applications. |
doi_str_mv | 10.1007/s00170-024-13616-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053367425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053367425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-8506ba65e18490d7fafabda9c986ad68927f6f46d815fb047c06f878e9c01d9b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczTZ7Gaz3qR-QsGLnsNsPjRlP2qSrfQv-KtNreDN0wzD884wD0LnjF4ySuurSCmrKaFFSRgXTBBxgGas5JxwyqpDNKOFkITXQh6jkxhXGc-UnKEvfkvWwQ_JGpx8gsFPPYFu6v2Qmw0MYPIEQ9eNW7wOo5l0JiHhDQQ_ThF3EG3A6_HThniN7SZnIflxwKPDvddhjClMOk3BRgyDwb3V7_mKhg7nJoBONviYvI6n6MhBF-3Zb52j1_u7l8UjWT4_PC1ulkRzViYiKypaEJVlsmyoqR04aA00upECjJBNUTvhSmEkq1xLy1pT4WQtbaMpM03L5-hivze_8zHZmNRqnMKQTypOK85FXRZVpoo9tXshButU1tRD2CpG1c652jtX2bn6ca5EDvF9KO6cvtnwt_qf1Dc3g4hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053367425</pqid></control><display><type>article</type><title>3D-printed titanium-aluminum-vanadium alloy produced at various laser powers: evaluation of microstructures and mechanical characteristics</title><source>Springer Nature</source><creator>Salim, Ali Aqeel ; Bakhtiar, Hazri ; Ghoshal, Sib Krishna ; Aziz, Muhammad Safwan Abd</creator><creatorcontrib>Salim, Ali Aqeel ; Bakhtiar, Hazri ; Ghoshal, Sib Krishna ; Aziz, Muhammad Safwan Abd</creatorcontrib><description>Achieving 3D-printed Ti6Al4V alloy with customized microstructures and mechanical characteristics remains challenging, wherein the processing efficiency mainly depends on the laser energy, mass deposition rate, and duration. Based on these factors, a simple and eco-friendly direct laser metal deposition approach was followed to get 3D-printed Ti6Al4V alloys at various laser powers (300–500 W). Herein, a 1.5-kW continuous fiber laser with a wavelength of 1080 nm was used to create a stable and dense alloy. The obtained 3D-printed specimens were characterized to assess the laser power–dependent microstructures, compositions, microhardness, grain sizes, color filling, and dimensional stability in terms of height/width. FESEM micrographs of the obtained alloys revealed the existence of porous spherical grains of mean size in the range of 50–81 μm. The alloy deposited at 300 W and 0.495 mm/s scan speed displayed the maximum hardness (excellent bong strength) value of 859.2 HV
0.5
devoid of any crack and porosity. XRD patterns of the alloy revealed the existence of α + β martensitic phase transformation which is responsible for the marginal increase of hardness. It is asserted that the proposed 3D-printed Ti6Al4V alloy can be beneficial for the development of efficient structural parts desired for diverse applications.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-13616-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Alloys ; CAE) and Design ; Computer-Aided Engineering (CAD ; Continuous fibers ; Dimensional stability ; Engineering ; Fiber lasers ; Grain size ; Industrial and Production Engineering ; Laser deposition ; Lasers ; Mechanical Engineering ; Mechanical properties ; Media Management ; Microhardness ; Microstructure ; Original Article ; Phase transitions ; Photomicrographs ; Titanium base alloys</subject><ispartof>International journal of advanced manufacturing technology, 2024-06, Vol.132 (7-8), p.3671-3681</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-8506ba65e18490d7fafabda9c986ad68927f6f46d815fb047c06f878e9c01d9b3</cites><orcidid>0000-0002-2801-9673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Salim, Ali Aqeel</creatorcontrib><creatorcontrib>Bakhtiar, Hazri</creatorcontrib><creatorcontrib>Ghoshal, Sib Krishna</creatorcontrib><creatorcontrib>Aziz, Muhammad Safwan Abd</creatorcontrib><title>3D-printed titanium-aluminum-vanadium alloy produced at various laser powers: evaluation of microstructures and mechanical characteristics</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Achieving 3D-printed Ti6Al4V alloy with customized microstructures and mechanical characteristics remains challenging, wherein the processing efficiency mainly depends on the laser energy, mass deposition rate, and duration. Based on these factors, a simple and eco-friendly direct laser metal deposition approach was followed to get 3D-printed Ti6Al4V alloys at various laser powers (300–500 W). Herein, a 1.5-kW continuous fiber laser with a wavelength of 1080 nm was used to create a stable and dense alloy. The obtained 3D-printed specimens were characterized to assess the laser power–dependent microstructures, compositions, microhardness, grain sizes, color filling, and dimensional stability in terms of height/width. FESEM micrographs of the obtained alloys revealed the existence of porous spherical grains of mean size in the range of 50–81 μm. The alloy deposited at 300 W and 0.495 mm/s scan speed displayed the maximum hardness (excellent bong strength) value of 859.2 HV
0.5
devoid of any crack and porosity. XRD patterns of the alloy revealed the existence of α + β martensitic phase transformation which is responsible for the marginal increase of hardness. It is asserted that the proposed 3D-printed Ti6Al4V alloy can be beneficial for the development of efficient structural parts desired for diverse applications.</description><subject>Alloys</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Continuous fibers</subject><subject>Dimensional stability</subject><subject>Engineering</subject><subject>Fiber lasers</subject><subject>Grain size</subject><subject>Industrial and Production Engineering</subject><subject>Laser deposition</subject><subject>Lasers</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Original Article</subject><subject>Phase transitions</subject><subject>Photomicrographs</subject><subject>Titanium base alloys</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczTZ7Gaz3qR-QsGLnsNsPjRlP2qSrfQv-KtNreDN0wzD884wD0LnjF4ySuurSCmrKaFFSRgXTBBxgGas5JxwyqpDNKOFkITXQh6jkxhXGc-UnKEvfkvWwQ_JGpx8gsFPPYFu6v2Qmw0MYPIEQ9eNW7wOo5l0JiHhDQQ_ThF3EG3A6_HThniN7SZnIflxwKPDvddhjClMOk3BRgyDwb3V7_mKhg7nJoBONviYvI6n6MhBF-3Zb52j1_u7l8UjWT4_PC1ulkRzViYiKypaEJVlsmyoqR04aA00upECjJBNUTvhSmEkq1xLy1pT4WQtbaMpM03L5-hivze_8zHZmNRqnMKQTypOK85FXRZVpoo9tXshButU1tRD2CpG1c652jtX2bn6ca5EDvF9KO6cvtnwt_qf1Dc3g4hg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Salim, Ali Aqeel</creator><creator>Bakhtiar, Hazri</creator><creator>Ghoshal, Sib Krishna</creator><creator>Aziz, Muhammad Safwan Abd</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2801-9673</orcidid></search><sort><creationdate>20240601</creationdate><title>3D-printed titanium-aluminum-vanadium alloy produced at various laser powers: evaluation of microstructures and mechanical characteristics</title><author>Salim, Ali Aqeel ; Bakhtiar, Hazri ; Ghoshal, Sib Krishna ; Aziz, Muhammad Safwan Abd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-8506ba65e18490d7fafabda9c986ad68927f6f46d815fb047c06f878e9c01d9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Continuous fibers</topic><topic>Dimensional stability</topic><topic>Engineering</topic><topic>Fiber lasers</topic><topic>Grain size</topic><topic>Industrial and Production Engineering</topic><topic>Laser deposition</topic><topic>Lasers</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Original Article</topic><topic>Phase transitions</topic><topic>Photomicrographs</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salim, Ali Aqeel</creatorcontrib><creatorcontrib>Bakhtiar, Hazri</creatorcontrib><creatorcontrib>Ghoshal, Sib Krishna</creatorcontrib><creatorcontrib>Aziz, Muhammad Safwan Abd</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salim, Ali Aqeel</au><au>Bakhtiar, Hazri</au><au>Ghoshal, Sib Krishna</au><au>Aziz, Muhammad Safwan Abd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-printed titanium-aluminum-vanadium alloy produced at various laser powers: evaluation of microstructures and mechanical characteristics</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>132</volume><issue>7-8</issue><spage>3671</spage><epage>3681</epage><pages>3671-3681</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Achieving 3D-printed Ti6Al4V alloy with customized microstructures and mechanical characteristics remains challenging, wherein the processing efficiency mainly depends on the laser energy, mass deposition rate, and duration. Based on these factors, a simple and eco-friendly direct laser metal deposition approach was followed to get 3D-printed Ti6Al4V alloys at various laser powers (300–500 W). Herein, a 1.5-kW continuous fiber laser with a wavelength of 1080 nm was used to create a stable and dense alloy. The obtained 3D-printed specimens were characterized to assess the laser power–dependent microstructures, compositions, microhardness, grain sizes, color filling, and dimensional stability in terms of height/width. FESEM micrographs of the obtained alloys revealed the existence of porous spherical grains of mean size in the range of 50–81 μm. The alloy deposited at 300 W and 0.495 mm/s scan speed displayed the maximum hardness (excellent bong strength) value of 859.2 HV
0.5
devoid of any crack and porosity. XRD patterns of the alloy revealed the existence of α + β martensitic phase transformation which is responsible for the marginal increase of hardness. It is asserted that the proposed 3D-printed Ti6Al4V alloy can be beneficial for the development of efficient structural parts desired for diverse applications.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-13616-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2801-9673</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2024-06, Vol.132 (7-8), p.3671-3681 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_3053367425 |
source | Springer Nature |
subjects | Alloys CAE) and Design Computer-Aided Engineering (CAD Continuous fibers Dimensional stability Engineering Fiber lasers Grain size Industrial and Production Engineering Laser deposition Lasers Mechanical Engineering Mechanical properties Media Management Microhardness Microstructure Original Article Phase transitions Photomicrographs Titanium base alloys |
title | 3D-printed titanium-aluminum-vanadium alloy produced at various laser powers: evaluation of microstructures and mechanical characteristics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-printed%20titanium-aluminum-vanadium%20alloy%20produced%20at%20various%20laser%20powers:%20evaluation%20of%20microstructures%20and%20mechanical%20characteristics&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Salim,%20Ali%20Aqeel&rft.date=2024-06-01&rft.volume=132&rft.issue=7-8&rft.spage=3671&rft.epage=3681&rft.pages=3671-3681&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-13616-6&rft_dat=%3Cproquest_cross%3E3053367425%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-8506ba65e18490d7fafabda9c986ad68927f6f46d815fb047c06f878e9c01d9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053367425&rft_id=info:pmid/&rfr_iscdi=true |