Loading…

Mechanistic Insights into Ru‐catalyzed Alkene Epoxidation with Nitrous Oxide as a Terminal Oxidant

Nitrous oxide (N2O) is a greenhouse gas produced in the manufacture of 6,6‐nylon and nitric acid. While an attractive oxidant that releases only N2 as a by‐product, the kinetic stability of N2O typically requires high temperatures and pressures for activation. This work describes initial kinetics of...

Full description

Saved in:
Bibliographic Details
Published in:European journal of inorganic chemistry 2024-05, Vol.27 (14), p.n/a
Main Authors: Timokhin, Vitaliy I., David Grigg, R., Schomaker, Jennifer M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2722-fb1fc04ca29e0ac610196dd47450442fa358889c0cf24b0c043ee58078a644a3
container_end_page n/a
container_issue 14
container_start_page
container_title European journal of inorganic chemistry
container_volume 27
creator Timokhin, Vitaliy I.
David Grigg, R.
Schomaker, Jennifer M.
description Nitrous oxide (N2O) is a greenhouse gas produced in the manufacture of 6,6‐nylon and nitric acid. While an attractive oxidant that releases only N2 as a by‐product, the kinetic stability of N2O typically requires high temperatures and pressures for activation. This work describes initial kinetics of oxygen transfer in the epoxidation of cholesteryl acetate with N2O catalysed by D4‐Ru(VI)(por)(O)2 complexes in efforts to provide a better mechanistic understanding of this chemistry. Insights include a need for low concentrations of the alkene to avoid competitive binding to the metal, possible saturation behavior at high N2O pressures, transfer of only one oxygen of RuVI(O)2 to substrate and a possible catalyst turnover involving disproportionation of RuIV(O) and RuIV(O)(N2O) to active RuVI(O)2, RuIV(O) and N2. These insights will be used in future designs of improved catalysts and reaction protocols that may operate efficiently at low pressures of N2O and ambident temperature. Simple kinetic studies provided insights to inform future catalyst designs able to employ N2O as an oxidant under mild conditions. Results suggest the use of low alkene concentrations, possible saturation behavior at high N2O pressures and a potential catalyst turnover involving disproportionation of RuIV(O) and RuIV(O)(N2O).
doi_str_mv 10.1002/ejic.202300782
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054000434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054000434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2722-fb1fc04ca29e0ac610196dd47450442fa358889c0cf24b0c043ee58078a644a3</originalsourceid><addsrcrecordid>eNqFkE9PAjEQxRujiYhePTfxvDj9s8vukRBUDGpiuDdDtyvFZRfbEsSTH8HP6CexiNGjp5m8_N5k3iPknEGPAfBLs7C6x4ELgH7OD0iHQVEkkOX8MO5SyIQVMj8mJ94vAECAyDqkvDN6jo31wWo6brx9mgdPbRNa-rj-fP_QGLDevpmSDupn0xg6WrWvtsRg24ZubJjTextcu_b0IcqGoqdIp8YtbYP1t4ZNOCVHFdbenP3MLplejabDm2TycD0eDiaJ5n3Ok2rGKg1SIy8MoM4YsCIrS9mXKUjJKxRpnueFBl1xOYOICmPSPKbFTEoUXXKxP7ty7cva-KAW7drFP7wSkMqYOZYQqd6e0q713plKrZxdotsqBmpXpNoVqX6LjIZib9jY2mz_odXodjz8834Brod4SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054000434</pqid></control><display><type>article</type><title>Mechanistic Insights into Ru‐catalyzed Alkene Epoxidation with Nitrous Oxide as a Terminal Oxidant</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Timokhin, Vitaliy I. ; David Grigg, R. ; Schomaker, Jennifer M.</creator><creatorcontrib>Timokhin, Vitaliy I. ; David Grigg, R. ; Schomaker, Jennifer M.</creatorcontrib><description>Nitrous oxide (N2O) is a greenhouse gas produced in the manufacture of 6,6‐nylon and nitric acid. While an attractive oxidant that releases only N2 as a by‐product, the kinetic stability of N2O typically requires high temperatures and pressures for activation. This work describes initial kinetics of oxygen transfer in the epoxidation of cholesteryl acetate with N2O catalysed by D4‐Ru(VI)(por)(O)2 complexes in efforts to provide a better mechanistic understanding of this chemistry. Insights include a need for low concentrations of the alkene to avoid competitive binding to the metal, possible saturation behavior at high N2O pressures, transfer of only one oxygen of RuVI(O)2 to substrate and a possible catalyst turnover involving disproportionation of RuIV(O) and RuIV(O)(N2O) to active RuVI(O)2, RuIV(O) and N2. These insights will be used in future designs of improved catalysts and reaction protocols that may operate efficiently at low pressures of N2O and ambident temperature. Simple kinetic studies provided insights to inform future catalyst designs able to employ N2O as an oxidant under mild conditions. Results suggest the use of low alkene concentrations, possible saturation behavior at high N2O pressures and a potential catalyst turnover involving disproportionation of RuIV(O) and RuIV(O)(N2O).</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.202300782</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alkenes ; Catalysts ; Disproportionation ; Epoxidation ; Greenhouse gases ; High temperature ; kinetics ; Low concentrations ; N2O ; Nitric acid ; Nitrous oxide ; oxidation ; Oxidizing agents ; Oxygen transfer ; Substrates</subject><ispartof>European journal of inorganic chemistry, 2024-05, Vol.27 (14), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2722-fb1fc04ca29e0ac610196dd47450442fa358889c0cf24b0c043ee58078a644a3</cites><orcidid>0000-0003-1329-950X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Timokhin, Vitaliy I.</creatorcontrib><creatorcontrib>David Grigg, R.</creatorcontrib><creatorcontrib>Schomaker, Jennifer M.</creatorcontrib><title>Mechanistic Insights into Ru‐catalyzed Alkene Epoxidation with Nitrous Oxide as a Terminal Oxidant</title><title>European journal of inorganic chemistry</title><description>Nitrous oxide (N2O) is a greenhouse gas produced in the manufacture of 6,6‐nylon and nitric acid. While an attractive oxidant that releases only N2 as a by‐product, the kinetic stability of N2O typically requires high temperatures and pressures for activation. This work describes initial kinetics of oxygen transfer in the epoxidation of cholesteryl acetate with N2O catalysed by D4‐Ru(VI)(por)(O)2 complexes in efforts to provide a better mechanistic understanding of this chemistry. Insights include a need for low concentrations of the alkene to avoid competitive binding to the metal, possible saturation behavior at high N2O pressures, transfer of only one oxygen of RuVI(O)2 to substrate and a possible catalyst turnover involving disproportionation of RuIV(O) and RuIV(O)(N2O) to active RuVI(O)2, RuIV(O) and N2. These insights will be used in future designs of improved catalysts and reaction protocols that may operate efficiently at low pressures of N2O and ambident temperature. Simple kinetic studies provided insights to inform future catalyst designs able to employ N2O as an oxidant under mild conditions. Results suggest the use of low alkene concentrations, possible saturation behavior at high N2O pressures and a potential catalyst turnover involving disproportionation of RuIV(O) and RuIV(O)(N2O).</description><subject>Alkenes</subject><subject>Catalysts</subject><subject>Disproportionation</subject><subject>Epoxidation</subject><subject>Greenhouse gases</subject><subject>High temperature</subject><subject>kinetics</subject><subject>Low concentrations</subject><subject>N2O</subject><subject>Nitric acid</subject><subject>Nitrous oxide</subject><subject>oxidation</subject><subject>Oxidizing agents</subject><subject>Oxygen transfer</subject><subject>Substrates</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PAjEQxRujiYhePTfxvDj9s8vukRBUDGpiuDdDtyvFZRfbEsSTH8HP6CexiNGjp5m8_N5k3iPknEGPAfBLs7C6x4ELgH7OD0iHQVEkkOX8MO5SyIQVMj8mJ94vAECAyDqkvDN6jo31wWo6brx9mgdPbRNa-rj-fP_QGLDevpmSDupn0xg6WrWvtsRg24ZubJjTextcu_b0IcqGoqdIp8YtbYP1t4ZNOCVHFdbenP3MLplejabDm2TycD0eDiaJ5n3Ok2rGKg1SIy8MoM4YsCIrS9mXKUjJKxRpnueFBl1xOYOICmPSPKbFTEoUXXKxP7ty7cva-KAW7drFP7wSkMqYOZYQqd6e0q713plKrZxdotsqBmpXpNoVqX6LjIZib9jY2mz_odXodjz8834Brod4SQ</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Timokhin, Vitaliy I.</creator><creator>David Grigg, R.</creator><creator>Schomaker, Jennifer M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1329-950X</orcidid></search><sort><creationdate>20240513</creationdate><title>Mechanistic Insights into Ru‐catalyzed Alkene Epoxidation with Nitrous Oxide as a Terminal Oxidant</title><author>Timokhin, Vitaliy I. ; David Grigg, R. ; Schomaker, Jennifer M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2722-fb1fc04ca29e0ac610196dd47450442fa358889c0cf24b0c043ee58078a644a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkenes</topic><topic>Catalysts</topic><topic>Disproportionation</topic><topic>Epoxidation</topic><topic>Greenhouse gases</topic><topic>High temperature</topic><topic>kinetics</topic><topic>Low concentrations</topic><topic>N2O</topic><topic>Nitric acid</topic><topic>Nitrous oxide</topic><topic>oxidation</topic><topic>Oxidizing agents</topic><topic>Oxygen transfer</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timokhin, Vitaliy I.</creatorcontrib><creatorcontrib>David Grigg, R.</creatorcontrib><creatorcontrib>Schomaker, Jennifer M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timokhin, Vitaliy I.</au><au>David Grigg, R.</au><au>Schomaker, Jennifer M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Insights into Ru‐catalyzed Alkene Epoxidation with Nitrous Oxide as a Terminal Oxidant</atitle><jtitle>European journal of inorganic chemistry</jtitle><date>2024-05-13</date><risdate>2024</risdate><volume>27</volume><issue>14</issue><epage>n/a</epage><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>Nitrous oxide (N2O) is a greenhouse gas produced in the manufacture of 6,6‐nylon and nitric acid. While an attractive oxidant that releases only N2 as a by‐product, the kinetic stability of N2O typically requires high temperatures and pressures for activation. This work describes initial kinetics of oxygen transfer in the epoxidation of cholesteryl acetate with N2O catalysed by D4‐Ru(VI)(por)(O)2 complexes in efforts to provide a better mechanistic understanding of this chemistry. Insights include a need for low concentrations of the alkene to avoid competitive binding to the metal, possible saturation behavior at high N2O pressures, transfer of only one oxygen of RuVI(O)2 to substrate and a possible catalyst turnover involving disproportionation of RuIV(O) and RuIV(O)(N2O) to active RuVI(O)2, RuIV(O) and N2. These insights will be used in future designs of improved catalysts and reaction protocols that may operate efficiently at low pressures of N2O and ambident temperature. Simple kinetic studies provided insights to inform future catalyst designs able to employ N2O as an oxidant under mild conditions. Results suggest the use of low alkene concentrations, possible saturation behavior at high N2O pressures and a potential catalyst turnover involving disproportionation of RuIV(O) and RuIV(O)(N2O).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejic.202300782</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1329-950X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-1948
ispartof European journal of inorganic chemistry, 2024-05, Vol.27 (14), p.n/a
issn 1434-1948
1099-0682
language eng
recordid cdi_proquest_journals_3054000434
source Wiley-Blackwell Read & Publish Collection
subjects Alkenes
Catalysts
Disproportionation
Epoxidation
Greenhouse gases
High temperature
kinetics
Low concentrations
N2O
Nitric acid
Nitrous oxide
oxidation
Oxidizing agents
Oxygen transfer
Substrates
title Mechanistic Insights into Ru‐catalyzed Alkene Epoxidation with Nitrous Oxide as a Terminal Oxidant
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Insights%20into%20Ru%E2%80%90catalyzed%20Alkene%20Epoxidation%20with%20Nitrous%20Oxide%20as%20a%20Terminal%20Oxidant&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Timokhin,%20Vitaliy%20I.&rft.date=2024-05-13&rft.volume=27&rft.issue=14&rft.epage=n/a&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.202300782&rft_dat=%3Cproquest_cross%3E3054000434%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2722-fb1fc04ca29e0ac610196dd47450442fa358889c0cf24b0c043ee58078a644a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3054000434&rft_id=info:pmid/&rfr_iscdi=true