Loading…
Ergodic aspects of trading with threshold strategies
To profit from price oscillations, investors frequently use threshold-type strategies where changes in the portfolio position are triggered by some indicators reaching prescribed levels. In this paper we investigate threshold-type strategies in the context of ergodic control. We make the first steps...
Saved in:
Published in: | Annals of operations research 2024-05, Vol.336 (1-2), p.691-709 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-1d3c44ea9356e6a09951ab5ba0fde7350bcefd3f07d254573579da1f3f0e52803 |
container_end_page | 709 |
container_issue | 1-2 |
container_start_page | 691 |
container_title | Annals of operations research |
container_volume | 336 |
creator | Lovas, Attila Rásonyi, Miklós |
description | To profit from price oscillations, investors frequently use threshold-type strategies where changes in the portfolio position are triggered by some indicators reaching prescribed levels. In this paper we investigate threshold-type strategies in the context of ergodic control. We make the first steps towards their optimization by proving ergodic properties of related functionals. Assuming Markovian price increments satisfying a minorization condition and (one-sided) boundedness we show, in particular, that for given thresholds, the distribution of the gains converges in the long run. We also extend recent results on the stability of overshoots of random walks from the i.i.d. increment case to Markovian increments, under suitable conditions. |
doi_str_mv | 10.1007/s10479-023-05233-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054284838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054284838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-1d3c44ea9356e6a09951ab5ba0fde7350bcefd3f07d254573579da1f3f0e52803</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkk-nuHqVUKxS86Dmkm2S7pe6uSYr4742u4M3TwMv7MTyMXQu4FQDlXRSgypqDRA4kETmdsJmgUvIasTplM5CkOCHCObuIcQ8AQlQ0Y2oV2sF2TWHi6JoUi8EXKRjb9W3x0aVdkXbBxd1wsEXMenJt5-IlO_PmEN3V752z14fVy3LNN8-PT8v7DW9QqMSFxUYpZ2qkhVsYqGsSZktbA966Egm2jfMWPZQ2f0dZKWtrhM-KI1kBztnN1DuG4f3oYtL74Rj6PKkRSMlKVVhll5xcTRhiDM7rMXRvJnxqAfqbjp7o6ExH_9DRlEM4hWI2960Lf9X_pL4ANLJm4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054284838</pqid></control><display><type>article</type><title>Ergodic aspects of trading with threshold strategies</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Lovas, Attila ; Rásonyi, Miklós</creator><creatorcontrib>Lovas, Attila ; Rásonyi, Miklós</creatorcontrib><description>To profit from price oscillations, investors frequently use threshold-type strategies where changes in the portfolio position are triggered by some indicators reaching prescribed levels. In this paper we investigate threshold-type strategies in the context of ergodic control. We make the first steps towards their optimization by proving ergodic properties of related functionals. Assuming Markovian price increments satisfying a minorization condition and (one-sided) boundedness we show, in particular, that for given thresholds, the distribution of the gains converges in the long run. We also extend recent results on the stability of overshoots of random walks from the i.i.d. increment case to Markovian increments, under suitable conditions.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-023-05233-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Combinatorics ; Ergodic processes ; Investigations ; Markov analysis ; Operations research ; Operations Research/Decision Theory ; Original Research ; Position indicators ; Random variables ; Random walk ; Theory of Computation</subject><ispartof>Annals of operations research, 2024-05, Vol.336 (1-2), p.691-709</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-1d3c44ea9356e6a09951ab5ba0fde7350bcefd3f07d254573579da1f3f0e52803</cites><orcidid>0000-0002-3105-4752 ; 0000-0002-7446-8023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lovas, Attila</creatorcontrib><creatorcontrib>Rásonyi, Miklós</creatorcontrib><title>Ergodic aspects of trading with threshold strategies</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>To profit from price oscillations, investors frequently use threshold-type strategies where changes in the portfolio position are triggered by some indicators reaching prescribed levels. In this paper we investigate threshold-type strategies in the context of ergodic control. We make the first steps towards their optimization by proving ergodic properties of related functionals. Assuming Markovian price increments satisfying a minorization condition and (one-sided) boundedness we show, in particular, that for given thresholds, the distribution of the gains converges in the long run. We also extend recent results on the stability of overshoots of random walks from the i.i.d. increment case to Markovian increments, under suitable conditions.</description><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Ergodic processes</subject><subject>Investigations</subject><subject>Markov analysis</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Original Research</subject><subject>Position indicators</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkk-nuHqVUKxS86Dmkm2S7pe6uSYr4742u4M3TwMv7MTyMXQu4FQDlXRSgypqDRA4kETmdsJmgUvIasTplM5CkOCHCObuIcQ8AQlQ0Y2oV2sF2TWHi6JoUi8EXKRjb9W3x0aVdkXbBxd1wsEXMenJt5-IlO_PmEN3V752z14fVy3LNN8-PT8v7DW9QqMSFxUYpZ2qkhVsYqGsSZktbA966Egm2jfMWPZQ2f0dZKWtrhM-KI1kBztnN1DuG4f3oYtL74Rj6PKkRSMlKVVhll5xcTRhiDM7rMXRvJnxqAfqbjp7o6ExH_9DRlEM4hWI2960Lf9X_pL4ANLJm4Q</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Lovas, Attila</creator><creator>Rásonyi, Miklós</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-3105-4752</orcidid><orcidid>https://orcid.org/0000-0002-7446-8023</orcidid></search><sort><creationdate>20240501</creationdate><title>Ergodic aspects of trading with threshold strategies</title><author>Lovas, Attila ; Rásonyi, Miklós</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-1d3c44ea9356e6a09951ab5ba0fde7350bcefd3f07d254573579da1f3f0e52803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Ergodic processes</topic><topic>Investigations</topic><topic>Markov analysis</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Original Research</topic><topic>Position indicators</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lovas, Attila</creatorcontrib><creatorcontrib>Rásonyi, Miklós</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lovas, Attila</au><au>Rásonyi, Miklós</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ergodic aspects of trading with threshold strategies</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>336</volume><issue>1-2</issue><spage>691</spage><epage>709</epage><pages>691-709</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>To profit from price oscillations, investors frequently use threshold-type strategies where changes in the portfolio position are triggered by some indicators reaching prescribed levels. In this paper we investigate threshold-type strategies in the context of ergodic control. We make the first steps towards their optimization by proving ergodic properties of related functionals. Assuming Markovian price increments satisfying a minorization condition and (one-sided) boundedness we show, in particular, that for given thresholds, the distribution of the gains converges in the long run. We also extend recent results on the stability of overshoots of random walks from the i.i.d. increment case to Markovian increments, under suitable conditions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-023-05233-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3105-4752</orcidid><orcidid>https://orcid.org/0000-0002-7446-8023</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2024-05, Vol.336 (1-2), p.691-709 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_journals_3054284838 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Business and Management Combinatorics Ergodic processes Investigations Markov analysis Operations research Operations Research/Decision Theory Original Research Position indicators Random variables Random walk Theory of Computation |
title | Ergodic aspects of trading with threshold strategies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ergodic%20aspects%20of%20trading%20with%20threshold%20strategies&rft.jtitle=Annals%20of%20operations%20research&rft.au=Lovas,%20Attila&rft.date=2024-05-01&rft.volume=336&rft.issue=1-2&rft.spage=691&rft.epage=709&rft.pages=691-709&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-023-05233-5&rft_dat=%3Cproquest_cross%3E3054284838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-1d3c44ea9356e6a09951ab5ba0fde7350bcefd3f07d254573579da1f3f0e52803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3054284838&rft_id=info:pmid/&rfr_iscdi=true |