Loading…

Ergodic aspects of trading with threshold strategies

To profit from price oscillations, investors frequently use threshold-type strategies where changes in the portfolio position are triggered by some indicators reaching prescribed levels. In this paper we investigate threshold-type strategies in the context of ergodic control. We make the first steps...

Full description

Saved in:
Bibliographic Details
Published in:Annals of operations research 2024-05, Vol.336 (1-2), p.691-709
Main Authors: Lovas, Attila, Rásonyi, Miklós
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-1d3c44ea9356e6a09951ab5ba0fde7350bcefd3f07d254573579da1f3f0e52803
container_end_page 709
container_issue 1-2
container_start_page 691
container_title Annals of operations research
container_volume 336
creator Lovas, Attila
Rásonyi, Miklós
description To profit from price oscillations, investors frequently use threshold-type strategies where changes in the portfolio position are triggered by some indicators reaching prescribed levels. In this paper we investigate threshold-type strategies in the context of ergodic control. We make the first steps towards their optimization by proving ergodic properties of related functionals. Assuming Markovian price increments satisfying a minorization condition and (one-sided) boundedness we show, in particular, that for given thresholds, the distribution of the gains converges in the long run. We also extend recent results on the stability of overshoots of random walks from the i.i.d. increment case to Markovian increments, under suitable conditions.
doi_str_mv 10.1007/s10479-023-05233-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054284838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054284838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-1d3c44ea9356e6a09951ab5ba0fde7350bcefd3f07d254573579da1f3f0e52803</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkk-nuHqVUKxS86Dmkm2S7pe6uSYr4742u4M3TwMv7MTyMXQu4FQDlXRSgypqDRA4kETmdsJmgUvIasTplM5CkOCHCObuIcQ8AQlQ0Y2oV2sF2TWHi6JoUi8EXKRjb9W3x0aVdkXbBxd1wsEXMenJt5-IlO_PmEN3V752z14fVy3LNN8-PT8v7DW9QqMSFxUYpZ2qkhVsYqGsSZktbA966Egm2jfMWPZQ2f0dZKWtrhM-KI1kBztnN1DuG4f3oYtL74Rj6PKkRSMlKVVhll5xcTRhiDM7rMXRvJnxqAfqbjp7o6ExH_9DRlEM4hWI2960Lf9X_pL4ANLJm4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054284838</pqid></control><display><type>article</type><title>Ergodic aspects of trading with threshold strategies</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Lovas, Attila ; Rásonyi, Miklós</creator><creatorcontrib>Lovas, Attila ; Rásonyi, Miklós</creatorcontrib><description>To profit from price oscillations, investors frequently use threshold-type strategies where changes in the portfolio position are triggered by some indicators reaching prescribed levels. In this paper we investigate threshold-type strategies in the context of ergodic control. We make the first steps towards their optimization by proving ergodic properties of related functionals. Assuming Markovian price increments satisfying a minorization condition and (one-sided) boundedness we show, in particular, that for given thresholds, the distribution of the gains converges in the long run. We also extend recent results on the stability of overshoots of random walks from the i.i.d. increment case to Markovian increments, under suitable conditions.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-023-05233-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Combinatorics ; Ergodic processes ; Investigations ; Markov analysis ; Operations research ; Operations Research/Decision Theory ; Original Research ; Position indicators ; Random variables ; Random walk ; Theory of Computation</subject><ispartof>Annals of operations research, 2024-05, Vol.336 (1-2), p.691-709</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-1d3c44ea9356e6a09951ab5ba0fde7350bcefd3f07d254573579da1f3f0e52803</cites><orcidid>0000-0002-3105-4752 ; 0000-0002-7446-8023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lovas, Attila</creatorcontrib><creatorcontrib>Rásonyi, Miklós</creatorcontrib><title>Ergodic aspects of trading with threshold strategies</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>To profit from price oscillations, investors frequently use threshold-type strategies where changes in the portfolio position are triggered by some indicators reaching prescribed levels. In this paper we investigate threshold-type strategies in the context of ergodic control. We make the first steps towards their optimization by proving ergodic properties of related functionals. Assuming Markovian price increments satisfying a minorization condition and (one-sided) boundedness we show, in particular, that for given thresholds, the distribution of the gains converges in the long run. We also extend recent results on the stability of overshoots of random walks from the i.i.d. increment case to Markovian increments, under suitable conditions.</description><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Ergodic processes</subject><subject>Investigations</subject><subject>Markov analysis</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Original Research</subject><subject>Position indicators</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkk-nuHqVUKxS86Dmkm2S7pe6uSYr4742u4M3TwMv7MTyMXQu4FQDlXRSgypqDRA4kETmdsJmgUvIasTplM5CkOCHCObuIcQ8AQlQ0Y2oV2sF2TWHi6JoUi8EXKRjb9W3x0aVdkXbBxd1wsEXMenJt5-IlO_PmEN3V752z14fVy3LNN8-PT8v7DW9QqMSFxUYpZ2qkhVsYqGsSZktbA966Egm2jfMWPZQ2f0dZKWtrhM-KI1kBztnN1DuG4f3oYtL74Rj6PKkRSMlKVVhll5xcTRhiDM7rMXRvJnxqAfqbjp7o6ExH_9DRlEM4hWI2960Lf9X_pL4ANLJm4Q</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Lovas, Attila</creator><creator>Rásonyi, Miklós</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-3105-4752</orcidid><orcidid>https://orcid.org/0000-0002-7446-8023</orcidid></search><sort><creationdate>20240501</creationdate><title>Ergodic aspects of trading with threshold strategies</title><author>Lovas, Attila ; Rásonyi, Miklós</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-1d3c44ea9356e6a09951ab5ba0fde7350bcefd3f07d254573579da1f3f0e52803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Ergodic processes</topic><topic>Investigations</topic><topic>Markov analysis</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Original Research</topic><topic>Position indicators</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lovas, Attila</creatorcontrib><creatorcontrib>Rásonyi, Miklós</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lovas, Attila</au><au>Rásonyi, Miklós</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ergodic aspects of trading with threshold strategies</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>336</volume><issue>1-2</issue><spage>691</spage><epage>709</epage><pages>691-709</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>To profit from price oscillations, investors frequently use threshold-type strategies where changes in the portfolio position are triggered by some indicators reaching prescribed levels. In this paper we investigate threshold-type strategies in the context of ergodic control. We make the first steps towards their optimization by proving ergodic properties of related functionals. Assuming Markovian price increments satisfying a minorization condition and (one-sided) boundedness we show, in particular, that for given thresholds, the distribution of the gains converges in the long run. We also extend recent results on the stability of overshoots of random walks from the i.i.d. increment case to Markovian increments, under suitable conditions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-023-05233-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3105-4752</orcidid><orcidid>https://orcid.org/0000-0002-7446-8023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2024-05, Vol.336 (1-2), p.691-709
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_3054284838
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Business and Management
Combinatorics
Ergodic processes
Investigations
Markov analysis
Operations research
Operations Research/Decision Theory
Original Research
Position indicators
Random variables
Random walk
Theory of Computation
title Ergodic aspects of trading with threshold strategies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ergodic%20aspects%20of%20trading%20with%20threshold%20strategies&rft.jtitle=Annals%20of%20operations%20research&rft.au=Lovas,%20Attila&rft.date=2024-05-01&rft.volume=336&rft.issue=1-2&rft.spage=691&rft.epage=709&rft.pages=691-709&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-023-05233-5&rft_dat=%3Cproquest_cross%3E3054284838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-1d3c44ea9356e6a09951ab5ba0fde7350bcefd3f07d254573579da1f3f0e52803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3054284838&rft_id=info:pmid/&rfr_iscdi=true