Loading…

A Method for Generating Course Test Questions Based on Natural Language Processing and Deep Learning

Assessment is viewed as an important means to understand learners' performance in the learning process. A good assessment method is based on high-quality examination questions. However, generating high-quality examination questions manually by teachers is a time-consuming task, and it is not ea...

Full description

Saved in:
Bibliographic Details
Published in:Education and information technologies 2024-05, Vol.29 (7), p.8843-8865
Main Authors: Wang, Hei-Chia, Chiang, Yu-Hung, Chen, I-Fan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Assessment is viewed as an important means to understand learners' performance in the learning process. A good assessment method is based on high-quality examination questions. However, generating high-quality examination questions manually by teachers is a time-consuming task, and it is not easy for students to obtain question banks. To solve this issue, this study proposes an automatic high-quality question generation system based on natural language processing and Topic Model. A two-stage test-question generation method (sentence selection and neural question generation) is proposed in this study. We apply multisource teaching materials to select declarative sentences, and then a neural question generation model called topic-embedding question generation (TE-QG) is employed to generate high-quality examination questions. This model is based on attention and the pointer-generator mechanism. The experimental results show that the sentence selection method can select sentences that meet the key points of the course, and the performance of the TE-QG model outperforms those of existing NQG models.
ISSN:1360-2357
1573-7608
DOI:10.1007/s10639-023-12159-9