Loading…

The Effect of Supply Rate of Li Ion and Anion on Li Dissolution/Deposition Behavior in LiNO3 Electrolyte Solutions for Li-Air Batteries

Although Li-air batteries (LAB) have a high theoretical energy density (3500 Wh kg−1), further developments are required to overcome their practical limitations. Regarding the Li-metal negative electrode (NE), we have previously reported on the reversibility of the Li dissolution/deposition reaction...

Full description

Saved in:
Bibliographic Details
Published in:Denki kagaku oyobi kōgyō butsuri kagaku 2024/04/20, Vol.92(4), pp.047003-047003
Main Authors: OZAWA, Fumisato, KOYAMA, Kazuki, IWASAKI, Daiki, AZUMA, Shota, NOMURA, Akihiro, SAITO, Morihiro
Format: Article
Language:eng ; jpn
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c409t-9aa61747dd44d366f09b9a89d0fd5d0c4a02b0b947386e2bac44b324d21541873
container_end_page 047003
container_issue 4
container_start_page 047003
container_title Denki kagaku oyobi kōgyō butsuri kagaku
container_volume 92
creator OZAWA, Fumisato
KOYAMA, Kazuki
IWASAKI, Daiki
AZUMA, Shota
NOMURA, Akihiro
SAITO, Morihiro
description Although Li-air batteries (LAB) have a high theoretical energy density (3500 Wh kg−1), further developments are required to overcome their practical limitations. Regarding the Li-metal negative electrode (NE), we have previously reported on the reversibility of the Li dissolution/deposition reaction by using Li|Li symmetric cells with a tetraglyme (G4)-based electrolytic solution. Particularly, in the 1.0 M (= mol L−1) LiNO3/G4 electrolyte under an O2 atmosphere, a Li2O protective layer is efficiently formed on the Li-metal electrode at a current density of 0.40 mA cm−2, and Li dendrite formation is suppressed. In the present study, we expanded the test conditions (current densities up to 2.0 mA cm−2 and temperatures of 10 to 50 °C) to clarify the dissolution/deposition behavior of the Li-metal NE. The effects of two electrolyte solutions, namely LiTFSI/G4 and LiNO3/G4, on the Li-metal NE were evaluated based on cyclical testing using Li|Li symmetric cells under an O2 atmosphere. The NEs were also examined by scanning electron microscopy and X-ray photoelectron spectroscopy. The results indicated that not only LiNO3 salt but also the supply of Li and nitrate ions at the Li electrode surface are critical factors in LAB performance.
doi_str_mv 10.5796/electrochemistry.23-00142
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3054734236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7d566d90014a4e919e18b124154b05f4</doaj_id><sourcerecordid>3054734236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-9aa61747dd44d366f09b9a89d0fd5d0c4a02b0b947386e2bac44b324d21541873</originalsourceid><addsrcrecordid>eNplkd9u2yAUxlG1Sou6vgNTr93y5xiby7TNtkjRIq3tNcIGN0Su8YBMyhP0tYfrNhebhOBw9H0_PnEQ-krJdVlJcWN726bg2519cTGF4zXjBSEU2BlaMFqLgkFJP6EF5QAFL4F9Rpcx7knWECkkkwv0-rizeNV1GYR9hx8O49gf8S-d7HTdOLz2A9aDwcvB5Sqv3Lt3Mfr-kHLn5t6OPrqpxLd2p_84H7CbVD-3HK_mgP0x4x7eHRF3WbJxxdIFfKtTssHZ-AWdd7qP9vL9vEBP31aPdz-Kzfb7-m65KVogMhVSa0ErqIwBMFyIjshG6loa0pnSkBY0YQ1pJFS8FpY1ugVoOAPDaAm0rvgFWs9c4_VejcG96HBUXjv11vDhWemQXNtbVZlSCCOnD9VgJZWW1g1lkEkNKTvIrKuZNQb_-2BjUnt_CEOOrzgpcwRgXGSVnFVt8DEG251epURNY1T_jlExrt7GmL3b2buPST_bk_Mj4n9OyRRM2wfhpGx3Oig78L8AIbH6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054734236</pqid></control><display><type>article</type><title>The Effect of Supply Rate of Li Ion and Anion on Li Dissolution/Deposition Behavior in LiNO3 Electrolyte Solutions for Li-Air Batteries</title><source>J-STAGE Free</source><creator>OZAWA, Fumisato ; KOYAMA, Kazuki ; IWASAKI, Daiki ; AZUMA, Shota ; NOMURA, Akihiro ; SAITO, Morihiro</creator><creatorcontrib>OZAWA, Fumisato ; KOYAMA, Kazuki ; IWASAKI, Daiki ; AZUMA, Shota ; NOMURA, Akihiro ; SAITO, Morihiro</creatorcontrib><description>Although Li-air batteries (LAB) have a high theoretical energy density (3500 Wh kg−1), further developments are required to overcome their practical limitations. Regarding the Li-metal negative electrode (NE), we have previously reported on the reversibility of the Li dissolution/deposition reaction by using Li|Li symmetric cells with a tetraglyme (G4)-based electrolytic solution. Particularly, in the 1.0 M (= mol L−1) LiNO3/G4 electrolyte under an O2 atmosphere, a Li2O protective layer is efficiently formed on the Li-metal electrode at a current density of 0.40 mA cm−2, and Li dendrite formation is suppressed. In the present study, we expanded the test conditions (current densities up to 2.0 mA cm−2 and temperatures of 10 to 50 °C) to clarify the dissolution/deposition behavior of the Li-metal NE. The effects of two electrolyte solutions, namely LiTFSI/G4 and LiNO3/G4, on the Li-metal NE were evaluated based on cyclical testing using Li|Li symmetric cells under an O2 atmosphere. The NEs were also examined by scanning electron microscopy and X-ray photoelectron spectroscopy. The results indicated that not only LiNO3 salt but also the supply of Li and nitrate ions at the Li electrode surface are critical factors in LAB performance.</description><identifier>ISSN: 1344-3542</identifier><identifier>EISSN: 2186-2451</identifier><identifier>DOI: 10.5796/electrochemistry.23-00142</identifier><language>eng ; jpn</language><publisher>Tokyo: The Electrochemical Society of Japan</publisher><subject>Atmosphere ; Batteries ; Current density ; Deposition ; Dissolution ; Electrodes ; Electrolytes ; Electrolytic cells ; Li Dissolution/deposition ; Li Metal Anode ; Li-air Battery (LAB) ; LiNO3 Electrolyte Solution ; Lithium oxides ; Metal air batteries ; Metals ; Photoelectron spectroscopy ; Photoelectrons ; Scanning electron microscopy ; X ray photoelectron spectroscopy</subject><ispartof>Electrochemistry, 2024/04/20, Vol.92(4), pp.047003-047003</ispartof><rights>The Author(s) 2023. Published by ECSJ.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c409t-9aa61747dd44d366f09b9a89d0fd5d0c4a02b0b947386e2bac44b324d21541873</cites><orcidid>0009-0008-7214-0885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1882,27924,27925</link.rule.ids></links><search><creatorcontrib>OZAWA, Fumisato</creatorcontrib><creatorcontrib>KOYAMA, Kazuki</creatorcontrib><creatorcontrib>IWASAKI, Daiki</creatorcontrib><creatorcontrib>AZUMA, Shota</creatorcontrib><creatorcontrib>NOMURA, Akihiro</creatorcontrib><creatorcontrib>SAITO, Morihiro</creatorcontrib><title>The Effect of Supply Rate of Li Ion and Anion on Li Dissolution/Deposition Behavior in LiNO3 Electrolyte Solutions for Li-Air Batteries</title><title>Denki kagaku oyobi kōgyō butsuri kagaku</title><addtitle>Electrochemistry</addtitle><description>Although Li-air batteries (LAB) have a high theoretical energy density (3500 Wh kg−1), further developments are required to overcome their practical limitations. Regarding the Li-metal negative electrode (NE), we have previously reported on the reversibility of the Li dissolution/deposition reaction by using Li|Li symmetric cells with a tetraglyme (G4)-based electrolytic solution. Particularly, in the 1.0 M (= mol L−1) LiNO3/G4 electrolyte under an O2 atmosphere, a Li2O protective layer is efficiently formed on the Li-metal electrode at a current density of 0.40 mA cm−2, and Li dendrite formation is suppressed. In the present study, we expanded the test conditions (current densities up to 2.0 mA cm−2 and temperatures of 10 to 50 °C) to clarify the dissolution/deposition behavior of the Li-metal NE. The effects of two electrolyte solutions, namely LiTFSI/G4 and LiNO3/G4, on the Li-metal NE were evaluated based on cyclical testing using Li|Li symmetric cells under an O2 atmosphere. The NEs were also examined by scanning electron microscopy and X-ray photoelectron spectroscopy. The results indicated that not only LiNO3 salt but also the supply of Li and nitrate ions at the Li electrode surface are critical factors in LAB performance.</description><subject>Atmosphere</subject><subject>Batteries</subject><subject>Current density</subject><subject>Deposition</subject><subject>Dissolution</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Li Dissolution/deposition</subject><subject>Li Metal Anode</subject><subject>Li-air Battery (LAB)</subject><subject>LiNO3 Electrolyte Solution</subject><subject>Lithium oxides</subject><subject>Metal air batteries</subject><subject>Metals</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Scanning electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><issn>1344-3542</issn><issn>2186-2451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkd9u2yAUxlG1Sou6vgNTr93y5xiby7TNtkjRIq3tNcIGN0Su8YBMyhP0tYfrNhebhOBw9H0_PnEQ-krJdVlJcWN726bg2519cTGF4zXjBSEU2BlaMFqLgkFJP6EF5QAFL4F9Rpcx7knWECkkkwv0-rizeNV1GYR9hx8O49gf8S-d7HTdOLz2A9aDwcvB5Sqv3Lt3Mfr-kHLn5t6OPrqpxLd2p_84H7CbVD-3HK_mgP0x4x7eHRF3WbJxxdIFfKtTssHZ-AWdd7qP9vL9vEBP31aPdz-Kzfb7-m65KVogMhVSa0ErqIwBMFyIjshG6loa0pnSkBY0YQ1pJFS8FpY1ugVoOAPDaAm0rvgFWs9c4_VejcG96HBUXjv11vDhWemQXNtbVZlSCCOnD9VgJZWW1g1lkEkNKTvIrKuZNQb_-2BjUnt_CEOOrzgpcwRgXGSVnFVt8DEG251epURNY1T_jlExrt7GmL3b2buPST_bk_Mj4n9OyRRM2wfhpGx3Oig78L8AIbH6</recordid><startdate>20240420</startdate><enddate>20240420</enddate><creator>OZAWA, Fumisato</creator><creator>KOYAMA, Kazuki</creator><creator>IWASAKI, Daiki</creator><creator>AZUMA, Shota</creator><creator>NOMURA, Akihiro</creator><creator>SAITO, Morihiro</creator><general>The Electrochemical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-7214-0885</orcidid></search><sort><creationdate>20240420</creationdate><title>The Effect of Supply Rate of Li Ion and Anion on Li Dissolution/Deposition Behavior in LiNO3 Electrolyte Solutions for Li-Air Batteries</title><author>OZAWA, Fumisato ; KOYAMA, Kazuki ; IWASAKI, Daiki ; AZUMA, Shota ; NOMURA, Akihiro ; SAITO, Morihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-9aa61747dd44d366f09b9a89d0fd5d0c4a02b0b947386e2bac44b324d21541873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2024</creationdate><topic>Atmosphere</topic><topic>Batteries</topic><topic>Current density</topic><topic>Deposition</topic><topic>Dissolution</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Li Dissolution/deposition</topic><topic>Li Metal Anode</topic><topic>Li-air Battery (LAB)</topic><topic>LiNO3 Electrolyte Solution</topic><topic>Lithium oxides</topic><topic>Metal air batteries</topic><topic>Metals</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Scanning electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OZAWA, Fumisato</creatorcontrib><creatorcontrib>KOYAMA, Kazuki</creatorcontrib><creatorcontrib>IWASAKI, Daiki</creatorcontrib><creatorcontrib>AZUMA, Shota</creatorcontrib><creatorcontrib>NOMURA, Akihiro</creatorcontrib><creatorcontrib>SAITO, Morihiro</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OZAWA, Fumisato</au><au>KOYAMA, Kazuki</au><au>IWASAKI, Daiki</au><au>AZUMA, Shota</au><au>NOMURA, Akihiro</au><au>SAITO, Morihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Supply Rate of Li Ion and Anion on Li Dissolution/Deposition Behavior in LiNO3 Electrolyte Solutions for Li-Air Batteries</atitle><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle><addtitle>Electrochemistry</addtitle><date>2024-04-20</date><risdate>2024</risdate><volume>92</volume><issue>4</issue><spage>047003</spage><epage>047003</epage><pages>047003-047003</pages><artnum>23-00142</artnum><issn>1344-3542</issn><eissn>2186-2451</eissn><abstract>Although Li-air batteries (LAB) have a high theoretical energy density (3500 Wh kg−1), further developments are required to overcome their practical limitations. Regarding the Li-metal negative electrode (NE), we have previously reported on the reversibility of the Li dissolution/deposition reaction by using Li|Li symmetric cells with a tetraglyme (G4)-based electrolytic solution. Particularly, in the 1.0 M (= mol L−1) LiNO3/G4 electrolyte under an O2 atmosphere, a Li2O protective layer is efficiently formed on the Li-metal electrode at a current density of 0.40 mA cm−2, and Li dendrite formation is suppressed. In the present study, we expanded the test conditions (current densities up to 2.0 mA cm−2 and temperatures of 10 to 50 °C) to clarify the dissolution/deposition behavior of the Li-metal NE. The effects of two electrolyte solutions, namely LiTFSI/G4 and LiNO3/G4, on the Li-metal NE were evaluated based on cyclical testing using Li|Li symmetric cells under an O2 atmosphere. The NEs were also examined by scanning electron microscopy and X-ray photoelectron spectroscopy. The results indicated that not only LiNO3 salt but also the supply of Li and nitrate ions at the Li electrode surface are critical factors in LAB performance.</abstract><cop>Tokyo</cop><pub>The Electrochemical Society of Japan</pub><doi>10.5796/electrochemistry.23-00142</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0008-7214-0885</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1344-3542
ispartof Electrochemistry, 2024/04/20, Vol.92(4), pp.047003-047003
issn 1344-3542
2186-2451
language eng ; jpn
recordid cdi_proquest_journals_3054734236
source J-STAGE Free
subjects Atmosphere
Batteries
Current density
Deposition
Dissolution
Electrodes
Electrolytes
Electrolytic cells
Li Dissolution/deposition
Li Metal Anode
Li-air Battery (LAB)
LiNO3 Electrolyte Solution
Lithium oxides
Metal air batteries
Metals
Photoelectron spectroscopy
Photoelectrons
Scanning electron microscopy
X ray photoelectron spectroscopy
title The Effect of Supply Rate of Li Ion and Anion on Li Dissolution/Deposition Behavior in LiNO3 Electrolyte Solutions for Li-Air Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Supply%20Rate%20of%20Li%20Ion%20and%20Anion%20on%20Li%20Dissolution/Deposition%20Behavior%20in%20LiNO3%20Electrolyte%20Solutions%20for%20Li-Air%20Batteries&rft.jtitle=Denki%20kagaku%20oyobi%20k%C5%8Dgy%C5%8D%20butsuri%20kagaku&rft.au=OZAWA,%20Fumisato&rft.date=2024-04-20&rft.volume=92&rft.issue=4&rft.spage=047003&rft.epage=047003&rft.pages=047003-047003&rft.artnum=23-00142&rft.issn=1344-3542&rft.eissn=2186-2451&rft_id=info:doi/10.5796/electrochemistry.23-00142&rft_dat=%3Cproquest_doaj_%3E3054734236%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-9aa61747dd44d366f09b9a89d0fd5d0c4a02b0b947386e2bac44b324d21541873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3054734236&rft_id=info:pmid/&rfr_iscdi=true