Loading…
Enhancing surface strength of tungsten by gradient nano-grained structure
A gradient nano-grained (GNG) structure demonstrates satisfactory surface strength. However, the underlying mechanism responsible for its strengthening lacks sufficient research. To explain how gradient nano-grained structures improve surface strength in detail, large-scale parallel molecular dynami...
Saved in:
Published in: | Journal of applied physics 2024-05, Vol.135 (19) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-ed4a97b883197e5886714d764af238e123a7c6070fe53d93a75a4dcef5f4cb653 |
container_end_page | |
container_issue | 19 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 135 |
creator | Xu, Daqian Huang, Zhifeng Xu, Like Yin, Guanchao Lin, Yaojun Shen, Qiang Chen, Fei |
description | A gradient nano-grained (GNG) structure demonstrates satisfactory surface strength. However, the underlying mechanism responsible for its strengthening lacks sufficient research. To explain how gradient nano-grained structures improve surface strength in detail, large-scale parallel molecular dynamics simulations are utilized in this study to investigate the mechanical deformation behavior of BCC tungsten with varying grain sizes during spherical nanoindentation. The findings suggest that a well-designed gradient structure can promote rational plasticity and an appropriate distribution of internal atomic stress. The critical point of maximum stress and hardness is observed when the initial grain size is 4.5 nm, with an average grain size of 7.1 nm. The interaction between grain boundary slip and migration in small grains, along with the enhanced activity of grain boundary dislocations in large grains, collectively contributes to the enhancement of the strength and hardness of the GNG structure. Compared with a homogeneous nano-grained structure, the gradient nano-grained structure exhibits a more rational distribution of dislocations and stress relaxation effects to enhance strength. The present work utilizes the molecular dynamics nanoindentation method to study GNG materials, providing a methodology for investigating the surface strengthening effects of GNG structures at the atomic scale and effectively revealing potential mechanisms for resisting surface deformation in GNG structures. |
doi_str_mv | 10.1063/5.0191162 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3055185681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055185681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-ed4a97b883197e5886714d764af238e123a7c6070fe53d93a75a4dcef5f4cb653</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNXcy-VtKqVoouNF1yGRuplM0U5PMom_vlHbt6nLg41w4hNwDXQAV7JkvKGgAUV2QGVClS8k5vSQzSisolZb6mtyktKMUQDE9I-tV2Nrg-tAVaYzeOixSjhi6vC0GX-QxdCljKJpD0UXb9hhyEWwYyin1AdujHl0eI96SK2-_E96d75x8va4-l-_l5uNtvXzZlK5SMpfY1lbLRikGWiJXSkioWylq6yumECpmpRNUUo-ctXpK3NatQ8997RrB2Zw8nHr3cfgdMWWzG8YYppeGUc5BcaFgUo8n5eKQUkRv9rH_sfFggJrjUoab81KTfTrZ5Ppscz-Ef_Afczhn_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055185681</pqid></control><display><type>article</type><title>Enhancing surface strength of tungsten by gradient nano-grained structure</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Xu, Daqian ; Huang, Zhifeng ; Xu, Like ; Yin, Guanchao ; Lin, Yaojun ; Shen, Qiang ; Chen, Fei</creator><creatorcontrib>Xu, Daqian ; Huang, Zhifeng ; Xu, Like ; Yin, Guanchao ; Lin, Yaojun ; Shen, Qiang ; Chen, Fei</creatorcontrib><description>A gradient nano-grained (GNG) structure demonstrates satisfactory surface strength. However, the underlying mechanism responsible for its strengthening lacks sufficient research. To explain how gradient nano-grained structures improve surface strength in detail, large-scale parallel molecular dynamics simulations are utilized in this study to investigate the mechanical deformation behavior of BCC tungsten with varying grain sizes during spherical nanoindentation. The findings suggest that a well-designed gradient structure can promote rational plasticity and an appropriate distribution of internal atomic stress. The critical point of maximum stress and hardness is observed when the initial grain size is 4.5 nm, with an average grain size of 7.1 nm. The interaction between grain boundary slip and migration in small grains, along with the enhanced activity of grain boundary dislocations in large grains, collectively contributes to the enhancement of the strength and hardness of the GNG structure. Compared with a homogeneous nano-grained structure, the gradient nano-grained structure exhibits a more rational distribution of dislocations and stress relaxation effects to enhance strength. The present work utilizes the molecular dynamics nanoindentation method to study GNG materials, providing a methodology for investigating the surface strengthening effects of GNG structures at the atomic scale and effectively revealing potential mechanisms for resisting surface deformation in GNG structures.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0191162</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Critical point ; Deformation effects ; Dynamic structural analysis ; Grain boundaries ; Grain size ; Hardness ; Molecular dynamics ; Nanoindentation ; Strengthening ; Stress relaxation ; Tungsten</subject><ispartof>Journal of applied physics, 2024-05, Vol.135 (19)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-ed4a97b883197e5886714d764af238e123a7c6070fe53d93a75a4dcef5f4cb653</cites><orcidid>0009-0003-3303-8355 ; 0000-0001-6097-2192 ; 0009-0002-4680-0348 ; 0000-0002-5545-2595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Daqian</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><creatorcontrib>Xu, Like</creatorcontrib><creatorcontrib>Yin, Guanchao</creatorcontrib><creatorcontrib>Lin, Yaojun</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><title>Enhancing surface strength of tungsten by gradient nano-grained structure</title><title>Journal of applied physics</title><description>A gradient nano-grained (GNG) structure demonstrates satisfactory surface strength. However, the underlying mechanism responsible for its strengthening lacks sufficient research. To explain how gradient nano-grained structures improve surface strength in detail, large-scale parallel molecular dynamics simulations are utilized in this study to investigate the mechanical deformation behavior of BCC tungsten with varying grain sizes during spherical nanoindentation. The findings suggest that a well-designed gradient structure can promote rational plasticity and an appropriate distribution of internal atomic stress. The critical point of maximum stress and hardness is observed when the initial grain size is 4.5 nm, with an average grain size of 7.1 nm. The interaction between grain boundary slip and migration in small grains, along with the enhanced activity of grain boundary dislocations in large grains, collectively contributes to the enhancement of the strength and hardness of the GNG structure. Compared with a homogeneous nano-grained structure, the gradient nano-grained structure exhibits a more rational distribution of dislocations and stress relaxation effects to enhance strength. The present work utilizes the molecular dynamics nanoindentation method to study GNG materials, providing a methodology for investigating the surface strengthening effects of GNG structures at the atomic scale and effectively revealing potential mechanisms for resisting surface deformation in GNG structures.</description><subject>Critical point</subject><subject>Deformation effects</subject><subject>Dynamic structural analysis</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Hardness</subject><subject>Molecular dynamics</subject><subject>Nanoindentation</subject><subject>Strengthening</subject><subject>Stress relaxation</subject><subject>Tungsten</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNXcy-VtKqVoouNF1yGRuplM0U5PMom_vlHbt6nLg41w4hNwDXQAV7JkvKGgAUV2QGVClS8k5vSQzSisolZb6mtyktKMUQDE9I-tV2Nrg-tAVaYzeOixSjhi6vC0GX-QxdCljKJpD0UXb9hhyEWwYyin1AdujHl0eI96SK2-_E96d75x8va4-l-_l5uNtvXzZlK5SMpfY1lbLRikGWiJXSkioWylq6yumECpmpRNUUo-ctXpK3NatQ8997RrB2Zw8nHr3cfgdMWWzG8YYppeGUc5BcaFgUo8n5eKQUkRv9rH_sfFggJrjUoab81KTfTrZ5Ppscz-Ef_Afczhn_A</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Xu, Daqian</creator><creator>Huang, Zhifeng</creator><creator>Xu, Like</creator><creator>Yin, Guanchao</creator><creator>Lin, Yaojun</creator><creator>Shen, Qiang</creator><creator>Chen, Fei</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-3303-8355</orcidid><orcidid>https://orcid.org/0000-0001-6097-2192</orcidid><orcidid>https://orcid.org/0009-0002-4680-0348</orcidid><orcidid>https://orcid.org/0000-0002-5545-2595</orcidid></search><sort><creationdate>20240521</creationdate><title>Enhancing surface strength of tungsten by gradient nano-grained structure</title><author>Xu, Daqian ; Huang, Zhifeng ; Xu, Like ; Yin, Guanchao ; Lin, Yaojun ; Shen, Qiang ; Chen, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-ed4a97b883197e5886714d764af238e123a7c6070fe53d93a75a4dcef5f4cb653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Critical point</topic><topic>Deformation effects</topic><topic>Dynamic structural analysis</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Hardness</topic><topic>Molecular dynamics</topic><topic>Nanoindentation</topic><topic>Strengthening</topic><topic>Stress relaxation</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Daqian</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><creatorcontrib>Xu, Like</creatorcontrib><creatorcontrib>Yin, Guanchao</creatorcontrib><creatorcontrib>Lin, Yaojun</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Daqian</au><au>Huang, Zhifeng</au><au>Xu, Like</au><au>Yin, Guanchao</au><au>Lin, Yaojun</au><au>Shen, Qiang</au><au>Chen, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing surface strength of tungsten by gradient nano-grained structure</atitle><jtitle>Journal of applied physics</jtitle><date>2024-05-21</date><risdate>2024</risdate><volume>135</volume><issue>19</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>A gradient nano-grained (GNG) structure demonstrates satisfactory surface strength. However, the underlying mechanism responsible for its strengthening lacks sufficient research. To explain how gradient nano-grained structures improve surface strength in detail, large-scale parallel molecular dynamics simulations are utilized in this study to investigate the mechanical deformation behavior of BCC tungsten with varying grain sizes during spherical nanoindentation. The findings suggest that a well-designed gradient structure can promote rational plasticity and an appropriate distribution of internal atomic stress. The critical point of maximum stress and hardness is observed when the initial grain size is 4.5 nm, with an average grain size of 7.1 nm. The interaction between grain boundary slip and migration in small grains, along with the enhanced activity of grain boundary dislocations in large grains, collectively contributes to the enhancement of the strength and hardness of the GNG structure. Compared with a homogeneous nano-grained structure, the gradient nano-grained structure exhibits a more rational distribution of dislocations and stress relaxation effects to enhance strength. The present work utilizes the molecular dynamics nanoindentation method to study GNG materials, providing a methodology for investigating the surface strengthening effects of GNG structures at the atomic scale and effectively revealing potential mechanisms for resisting surface deformation in GNG structures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0191162</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0003-3303-8355</orcidid><orcidid>https://orcid.org/0000-0001-6097-2192</orcidid><orcidid>https://orcid.org/0009-0002-4680-0348</orcidid><orcidid>https://orcid.org/0000-0002-5545-2595</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-05, Vol.135 (19) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_3055185681 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Critical point Deformation effects Dynamic structural analysis Grain boundaries Grain size Hardness Molecular dynamics Nanoindentation Strengthening Stress relaxation Tungsten |
title | Enhancing surface strength of tungsten by gradient nano-grained structure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20surface%20strength%20of%20tungsten%20by%20gradient%20nano-grained%20structure&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Xu,%20Daqian&rft.date=2024-05-21&rft.volume=135&rft.issue=19&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0191162&rft_dat=%3Cproquest_scita%3E3055185681%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-ed4a97b883197e5886714d764af238e123a7c6070fe53d93a75a4dcef5f4cb653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055185681&rft_id=info:pmid/&rfr_iscdi=true |