Loading…

Enhancing surface strength of tungsten by gradient nano-grained structure

A gradient nano-grained (GNG) structure demonstrates satisfactory surface strength. However, the underlying mechanism responsible for its strengthening lacks sufficient research. To explain how gradient nano-grained structures improve surface strength in detail, large-scale parallel molecular dynami...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2024-05, Vol.135 (19)
Main Authors: Xu, Daqian, Huang, Zhifeng, Xu, Like, Yin, Guanchao, Lin, Yaojun, Shen, Qiang, Chen, Fei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-ed4a97b883197e5886714d764af238e123a7c6070fe53d93a75a4dcef5f4cb653
container_end_page
container_issue 19
container_start_page
container_title Journal of applied physics
container_volume 135
creator Xu, Daqian
Huang, Zhifeng
Xu, Like
Yin, Guanchao
Lin, Yaojun
Shen, Qiang
Chen, Fei
description A gradient nano-grained (GNG) structure demonstrates satisfactory surface strength. However, the underlying mechanism responsible for its strengthening lacks sufficient research. To explain how gradient nano-grained structures improve surface strength in detail, large-scale parallel molecular dynamics simulations are utilized in this study to investigate the mechanical deformation behavior of BCC tungsten with varying grain sizes during spherical nanoindentation. The findings suggest that a well-designed gradient structure can promote rational plasticity and an appropriate distribution of internal atomic stress. The critical point of maximum stress and hardness is observed when the initial grain size is 4.5 nm, with an average grain size of 7.1 nm. The interaction between grain boundary slip and migration in small grains, along with the enhanced activity of grain boundary dislocations in large grains, collectively contributes to the enhancement of the strength and hardness of the GNG structure. Compared with a homogeneous nano-grained structure, the gradient nano-grained structure exhibits a more rational distribution of dislocations and stress relaxation effects to enhance strength. The present work utilizes the molecular dynamics nanoindentation method to study GNG materials, providing a methodology for investigating the surface strengthening effects of GNG structures at the atomic scale and effectively revealing potential mechanisms for resisting surface deformation in GNG structures.
doi_str_mv 10.1063/5.0191162
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3055185681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055185681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-ed4a97b883197e5886714d764af238e123a7c6070fe53d93a75a4dcef5f4cb653</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNXcy-VtKqVoouNF1yGRuplM0U5PMom_vlHbt6nLg41w4hNwDXQAV7JkvKGgAUV2QGVClS8k5vSQzSisolZb6mtyktKMUQDE9I-tV2Nrg-tAVaYzeOixSjhi6vC0GX-QxdCljKJpD0UXb9hhyEWwYyin1AdujHl0eI96SK2-_E96d75x8va4-l-_l5uNtvXzZlK5SMpfY1lbLRikGWiJXSkioWylq6yumECpmpRNUUo-ctXpK3NatQ8997RrB2Zw8nHr3cfgdMWWzG8YYppeGUc5BcaFgUo8n5eKQUkRv9rH_sfFggJrjUoab81KTfTrZ5Ppscz-Ef_Afczhn_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055185681</pqid></control><display><type>article</type><title>Enhancing surface strength of tungsten by gradient nano-grained structure</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Xu, Daqian ; Huang, Zhifeng ; Xu, Like ; Yin, Guanchao ; Lin, Yaojun ; Shen, Qiang ; Chen, Fei</creator><creatorcontrib>Xu, Daqian ; Huang, Zhifeng ; Xu, Like ; Yin, Guanchao ; Lin, Yaojun ; Shen, Qiang ; Chen, Fei</creatorcontrib><description>A gradient nano-grained (GNG) structure demonstrates satisfactory surface strength. However, the underlying mechanism responsible for its strengthening lacks sufficient research. To explain how gradient nano-grained structures improve surface strength in detail, large-scale parallel molecular dynamics simulations are utilized in this study to investigate the mechanical deformation behavior of BCC tungsten with varying grain sizes during spherical nanoindentation. The findings suggest that a well-designed gradient structure can promote rational plasticity and an appropriate distribution of internal atomic stress. The critical point of maximum stress and hardness is observed when the initial grain size is 4.5 nm, with an average grain size of 7.1 nm. The interaction between grain boundary slip and migration in small grains, along with the enhanced activity of grain boundary dislocations in large grains, collectively contributes to the enhancement of the strength and hardness of the GNG structure. Compared with a homogeneous nano-grained structure, the gradient nano-grained structure exhibits a more rational distribution of dislocations and stress relaxation effects to enhance strength. The present work utilizes the molecular dynamics nanoindentation method to study GNG materials, providing a methodology for investigating the surface strengthening effects of GNG structures at the atomic scale and effectively revealing potential mechanisms for resisting surface deformation in GNG structures.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0191162</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Critical point ; Deformation effects ; Dynamic structural analysis ; Grain boundaries ; Grain size ; Hardness ; Molecular dynamics ; Nanoindentation ; Strengthening ; Stress relaxation ; Tungsten</subject><ispartof>Journal of applied physics, 2024-05, Vol.135 (19)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-ed4a97b883197e5886714d764af238e123a7c6070fe53d93a75a4dcef5f4cb653</cites><orcidid>0009-0003-3303-8355 ; 0000-0001-6097-2192 ; 0009-0002-4680-0348 ; 0000-0002-5545-2595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Daqian</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><creatorcontrib>Xu, Like</creatorcontrib><creatorcontrib>Yin, Guanchao</creatorcontrib><creatorcontrib>Lin, Yaojun</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><title>Enhancing surface strength of tungsten by gradient nano-grained structure</title><title>Journal of applied physics</title><description>A gradient nano-grained (GNG) structure demonstrates satisfactory surface strength. However, the underlying mechanism responsible for its strengthening lacks sufficient research. To explain how gradient nano-grained structures improve surface strength in detail, large-scale parallel molecular dynamics simulations are utilized in this study to investigate the mechanical deformation behavior of BCC tungsten with varying grain sizes during spherical nanoindentation. The findings suggest that a well-designed gradient structure can promote rational plasticity and an appropriate distribution of internal atomic stress. The critical point of maximum stress and hardness is observed when the initial grain size is 4.5 nm, with an average grain size of 7.1 nm. The interaction between grain boundary slip and migration in small grains, along with the enhanced activity of grain boundary dislocations in large grains, collectively contributes to the enhancement of the strength and hardness of the GNG structure. Compared with a homogeneous nano-grained structure, the gradient nano-grained structure exhibits a more rational distribution of dislocations and stress relaxation effects to enhance strength. The present work utilizes the molecular dynamics nanoindentation method to study GNG materials, providing a methodology for investigating the surface strengthening effects of GNG structures at the atomic scale and effectively revealing potential mechanisms for resisting surface deformation in GNG structures.</description><subject>Critical point</subject><subject>Deformation effects</subject><subject>Dynamic structural analysis</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Hardness</subject><subject>Molecular dynamics</subject><subject>Nanoindentation</subject><subject>Strengthening</subject><subject>Stress relaxation</subject><subject>Tungsten</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNXcy-VtKqVoouNF1yGRuplM0U5PMom_vlHbt6nLg41w4hNwDXQAV7JkvKGgAUV2QGVClS8k5vSQzSisolZb6mtyktKMUQDE9I-tV2Nrg-tAVaYzeOixSjhi6vC0GX-QxdCljKJpD0UXb9hhyEWwYyin1AdujHl0eI96SK2-_E96d75x8va4-l-_l5uNtvXzZlK5SMpfY1lbLRikGWiJXSkioWylq6yumECpmpRNUUo-ctXpK3NatQ8997RrB2Zw8nHr3cfgdMWWzG8YYppeGUc5BcaFgUo8n5eKQUkRv9rH_sfFggJrjUoab81KTfTrZ5Ppscz-Ef_Afczhn_A</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Xu, Daqian</creator><creator>Huang, Zhifeng</creator><creator>Xu, Like</creator><creator>Yin, Guanchao</creator><creator>Lin, Yaojun</creator><creator>Shen, Qiang</creator><creator>Chen, Fei</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-3303-8355</orcidid><orcidid>https://orcid.org/0000-0001-6097-2192</orcidid><orcidid>https://orcid.org/0009-0002-4680-0348</orcidid><orcidid>https://orcid.org/0000-0002-5545-2595</orcidid></search><sort><creationdate>20240521</creationdate><title>Enhancing surface strength of tungsten by gradient nano-grained structure</title><author>Xu, Daqian ; Huang, Zhifeng ; Xu, Like ; Yin, Guanchao ; Lin, Yaojun ; Shen, Qiang ; Chen, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-ed4a97b883197e5886714d764af238e123a7c6070fe53d93a75a4dcef5f4cb653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Critical point</topic><topic>Deformation effects</topic><topic>Dynamic structural analysis</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Hardness</topic><topic>Molecular dynamics</topic><topic>Nanoindentation</topic><topic>Strengthening</topic><topic>Stress relaxation</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Daqian</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><creatorcontrib>Xu, Like</creatorcontrib><creatorcontrib>Yin, Guanchao</creatorcontrib><creatorcontrib>Lin, Yaojun</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Daqian</au><au>Huang, Zhifeng</au><au>Xu, Like</au><au>Yin, Guanchao</au><au>Lin, Yaojun</au><au>Shen, Qiang</au><au>Chen, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing surface strength of tungsten by gradient nano-grained structure</atitle><jtitle>Journal of applied physics</jtitle><date>2024-05-21</date><risdate>2024</risdate><volume>135</volume><issue>19</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>A gradient nano-grained (GNG) structure demonstrates satisfactory surface strength. However, the underlying mechanism responsible for its strengthening lacks sufficient research. To explain how gradient nano-grained structures improve surface strength in detail, large-scale parallel molecular dynamics simulations are utilized in this study to investigate the mechanical deformation behavior of BCC tungsten with varying grain sizes during spherical nanoindentation. The findings suggest that a well-designed gradient structure can promote rational plasticity and an appropriate distribution of internal atomic stress. The critical point of maximum stress and hardness is observed when the initial grain size is 4.5 nm, with an average grain size of 7.1 nm. The interaction between grain boundary slip and migration in small grains, along with the enhanced activity of grain boundary dislocations in large grains, collectively contributes to the enhancement of the strength and hardness of the GNG structure. Compared with a homogeneous nano-grained structure, the gradient nano-grained structure exhibits a more rational distribution of dislocations and stress relaxation effects to enhance strength. The present work utilizes the molecular dynamics nanoindentation method to study GNG materials, providing a methodology for investigating the surface strengthening effects of GNG structures at the atomic scale and effectively revealing potential mechanisms for resisting surface deformation in GNG structures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0191162</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0003-3303-8355</orcidid><orcidid>https://orcid.org/0000-0001-6097-2192</orcidid><orcidid>https://orcid.org/0009-0002-4680-0348</orcidid><orcidid>https://orcid.org/0000-0002-5545-2595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-05, Vol.135 (19)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_3055185681
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Critical point
Deformation effects
Dynamic structural analysis
Grain boundaries
Grain size
Hardness
Molecular dynamics
Nanoindentation
Strengthening
Stress relaxation
Tungsten
title Enhancing surface strength of tungsten by gradient nano-grained structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20surface%20strength%20of%20tungsten%20by%20gradient%20nano-grained%20structure&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Xu,%20Daqian&rft.date=2024-05-21&rft.volume=135&rft.issue=19&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0191162&rft_dat=%3Cproquest_scita%3E3055185681%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-ed4a97b883197e5886714d764af238e123a7c6070fe53d93a75a4dcef5f4cb653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055185681&rft_id=info:pmid/&rfr_iscdi=true