Loading…

Parameter estimation and long-range dependence of the fractional binomial process

In 1990, Jakeman (see \cite{jakeman1990statistics}) defined the binomial process as a special case of the classical birth-death process, where the probability of birth is proportional to the difference between a fixed number and the number of individuals present. Later, a fractional generalization o...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-05
Main Authors: Meena Sanjay Babulal, Gauttam, Sunil Kumar, Maheshwari, Aditya
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Meena Sanjay Babulal
Gauttam, Sunil Kumar
Maheshwari, Aditya
description In 1990, Jakeman (see \cite{jakeman1990statistics}) defined the binomial process as a special case of the classical birth-death process, where the probability of birth is proportional to the difference between a fixed number and the number of individuals present. Later, a fractional generalization of the binomial process was studied by Cahoy and Polito (2012) (see \cite{cahoy2012fractional}) and called it as fractional binomial process (FBP). In this paper, we study second-order properties of the FBP and the long-range behavior of the FBP and its noise process. We also estimate the parameters of the FBP using the method of moments procedure. Finally, we present the simulated sample paths and its algorithm for the FBP.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3055208947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055208947</sourcerecordid><originalsourceid>FETCH-proquest_journals_30552089473</originalsourceid><addsrcrecordid>eNqNjUEKwjAURIMgWLR3-OC6EJPG1rUoLhXcl2_726a0SU3S-xvBA7iaB_OGWbFESHnIylyIDUu9Hzjn4lgIpWTCHnd0OFEgB-SDnjBoawBNA6M1XebQdAQNzWQaMjWBbSH0BK3D-mviCC9t7KQjzM7W5P2OrVscPaW_3LL99fI837LYv5d4Ug12cXHpK8mVErw85YX8z_oA5uE_1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055208947</pqid></control><display><type>article</type><title>Parameter estimation and long-range dependence of the fractional binomial process</title><source>Publicly Available Content (ProQuest)</source><creator>Meena Sanjay Babulal ; Gauttam, Sunil Kumar ; Maheshwari, Aditya</creator><creatorcontrib>Meena Sanjay Babulal ; Gauttam, Sunil Kumar ; Maheshwari, Aditya</creatorcontrib><description>In 1990, Jakeman (see \cite{jakeman1990statistics}) defined the binomial process as a special case of the classical birth-death process, where the probability of birth is proportional to the difference between a fixed number and the number of individuals present. Later, a fractional generalization of the binomial process was studied by Cahoy and Polito (2012) (see \cite{cahoy2012fractional}) and called it as fractional binomial process (FBP). In this paper, we study second-order properties of the FBP and the long-range behavior of the FBP and its noise process. We also estimate the parameters of the FBP using the method of moments procedure. Finally, we present the simulated sample paths and its algorithm for the FBP.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Markov processes ; Method of moments ; Parameter estimation</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3055208947?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Meena Sanjay Babulal</creatorcontrib><creatorcontrib>Gauttam, Sunil Kumar</creatorcontrib><creatorcontrib>Maheshwari, Aditya</creatorcontrib><title>Parameter estimation and long-range dependence of the fractional binomial process</title><title>arXiv.org</title><description>In 1990, Jakeman (see \cite{jakeman1990statistics}) defined the binomial process as a special case of the classical birth-death process, where the probability of birth is proportional to the difference between a fixed number and the number of individuals present. Later, a fractional generalization of the binomial process was studied by Cahoy and Polito (2012) (see \cite{cahoy2012fractional}) and called it as fractional binomial process (FBP). In this paper, we study second-order properties of the FBP and the long-range behavior of the FBP and its noise process. We also estimate the parameters of the FBP using the method of moments procedure. Finally, we present the simulated sample paths and its algorithm for the FBP.</description><subject>Algorithms</subject><subject>Markov processes</subject><subject>Method of moments</subject><subject>Parameter estimation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjUEKwjAURIMgWLR3-OC6EJPG1rUoLhXcl2_726a0SU3S-xvBA7iaB_OGWbFESHnIylyIDUu9Hzjn4lgIpWTCHnd0OFEgB-SDnjBoawBNA6M1XebQdAQNzWQaMjWBbSH0BK3D-mviCC9t7KQjzM7W5P2OrVscPaW_3LL99fI837LYv5d4Ug12cXHpK8mVErw85YX8z_oA5uE_1Q</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>Meena Sanjay Babulal</creator><creator>Gauttam, Sunil Kumar</creator><creator>Maheshwari, Aditya</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240514</creationdate><title>Parameter estimation and long-range dependence of the fractional binomial process</title><author>Meena Sanjay Babulal ; Gauttam, Sunil Kumar ; Maheshwari, Aditya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30552089473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Markov processes</topic><topic>Method of moments</topic><topic>Parameter estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Meena Sanjay Babulal</creatorcontrib><creatorcontrib>Gauttam, Sunil Kumar</creatorcontrib><creatorcontrib>Maheshwari, Aditya</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meena Sanjay Babulal</au><au>Gauttam, Sunil Kumar</au><au>Maheshwari, Aditya</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Parameter estimation and long-range dependence of the fractional binomial process</atitle><jtitle>arXiv.org</jtitle><date>2024-05-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In 1990, Jakeman (see \cite{jakeman1990statistics}) defined the binomial process as a special case of the classical birth-death process, where the probability of birth is proportional to the difference between a fixed number and the number of individuals present. Later, a fractional generalization of the binomial process was studied by Cahoy and Polito (2012) (see \cite{cahoy2012fractional}) and called it as fractional binomial process (FBP). In this paper, we study second-order properties of the FBP and the long-range behavior of the FBP and its noise process. We also estimate the parameters of the FBP using the method of moments procedure. Finally, we present the simulated sample paths and its algorithm for the FBP.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3055208947
source Publicly Available Content (ProQuest)
subjects Algorithms
Markov processes
Method of moments
Parameter estimation
title Parameter estimation and long-range dependence of the fractional binomial process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Parameter%20estimation%20and%20long-range%20dependence%20of%20the%20fractional%20binomial%20process&rft.jtitle=arXiv.org&rft.au=Meena%20Sanjay%20Babulal&rft.date=2024-05-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3055208947%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30552089473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055208947&rft_id=info:pmid/&rfr_iscdi=true