Loading…
Semi-supervised clustering ensemble based on genetic algorithm model
Clustering ensemble can be regarded as a mathematical optimization problem, and the genetic algorithm has been widely used as a powerful tool for solving such optimization problems. However, the existing research on clustering ensemble based on the genetic algorithm model has mainly focused on unsup...
Saved in:
Published in: | Multimedia tools and applications 2024-05, Vol.83 (18), p.55851-55865 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Clustering ensemble can be regarded as a mathematical optimization problem, and the genetic algorithm has been widely used as a powerful tool for solving such optimization problems. However, the existing research on clustering ensemble based on the genetic algorithm model has mainly focused on unsupervised approaches and has been limited by parameters like crossover probability and mutation probability. This paper presents a semi-supervised clustering ensemble based on the genetic algorithm model. This approach utilizes pairwise constraint information to strengthen the crossover process and mutation process, resulting in enhanced overall algorithm performance. To validate the effectiveness of the proposed approach, extensive comparative experiments were conducted on 9 diverse datasets. The results of the experiments demonstrate the superiority of the proposed algorithm in terms of clustering accuracy and robustness. In summary, this paper introduces a novel semi-supervised approach based on the genetic algorithm model. The utilization of pair-wise constraint information enhances the algorithm’s performance, making it a promising solution for real-world clustering problems. |
---|---|
ISSN: | 1573-7721 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-023-17662-2 |