Loading…
GROUPS WITH FEW NONPOWER SUBGROUPS
For a group G and $m\ge 1$ , let $G^m$ denote the subgroup generated by the elements $g^m$ , where g runs through G. The subgroups not of the form $G^m$ are the nonpower subgroups of G. We classify the groups with at most nine nonpower subgroups.
Saved in:
Published in: | Bulletin of the Australian Mathematical Society 2024-06, Vol.109 (3), p.529-540 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c269t-48ccaf4e53cc06a2102307e4e803f3a88d64bf09f59acb4575fc111c99f3cb033 |
container_end_page | 540 |
container_issue | 3 |
container_start_page | 529 |
container_title | Bulletin of the Australian Mathematical Society |
container_volume | 109 |
creator | ZHENG, JIWEI ZHOU, WEI TAYLOR, D. E. |
description | For a group G and
$m\ge 1$
, let
$G^m$
denote the subgroup generated by the elements
$g^m$
, where g runs through G. The subgroups not of the form
$G^m$
are the nonpower subgroups of G. We classify the groups with at most nine nonpower subgroups. |
doi_str_mv | 10.1017/S0004972723000783 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055295191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972723000783</cupid><sourcerecordid>3055295191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-48ccaf4e53cc06a2102307e4e803f3a88d64bf09f59acb4575fc111c99f3cb033</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaJgnf4A34o-V3ObpEkedewLxjrWlT6GNEtkw9mZbg_796Z04IP4dO_lfNzDQegR8Atg4K8FxphKnvKUhI0LcoUi4IwlkBFyjaIOTjr8Ft217S5cjKUiQk-TVV4ui7iarafxeFTFi3yxzKvRKi7K9x67RzdOf7b24TIHqByP1sNpMs8ns-HbPDFpJo8JFcZoRy0jxuBMp4BDFG6pFZg4ooXYZLR2WDomtakp48wZADBSOmJqTMgAPfe-B998n2x7VLvm5L_CS0VwSCsZSAgs6FnGN23rrVMHv91rf1aAVVeF-lNF0JCLRu9rv9182F_r_1U_I8Fa8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055295191</pqid></control><display><type>article</type><title>GROUPS WITH FEW NONPOWER SUBGROUPS</title><source>Cambridge Journals Online</source><creator>ZHENG, JIWEI ; ZHOU, WEI ; TAYLOR, D. E.</creator><creatorcontrib>ZHENG, JIWEI ; ZHOU, WEI ; TAYLOR, D. E.</creatorcontrib><description>For a group G and
$m\ge 1$
, let
$G^m$
denote the subgroup generated by the elements
$g^m$
, where g runs through G. The subgroups not of the form
$G^m$
are the nonpower subgroups of G. We classify the groups with at most nine nonpower subgroups.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972723000783</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Subgroups</subject><ispartof>Bulletin of the Australian Mathematical Society, 2024-06, Vol.109 (3), p.529-540</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-48ccaf4e53cc06a2102307e4e803f3a88d64bf09f59acb4575fc111c99f3cb033</cites><orcidid>0000-0001-9538-1915 ; 0000-0003-2689-4746 ; 0009-0007-2728-9499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972723000783/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>ZHENG, JIWEI</creatorcontrib><creatorcontrib>ZHOU, WEI</creatorcontrib><creatorcontrib>TAYLOR, D. E.</creatorcontrib><title>GROUPS WITH FEW NONPOWER SUBGROUPS</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>For a group G and
$m\ge 1$
, let
$G^m$
denote the subgroup generated by the elements
$g^m$
, where g runs through G. The subgroups not of the form
$G^m$
are the nonpower subgroups of G. We classify the groups with at most nine nonpower subgroups.</description><subject>Subgroups</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UF1LwzAUDaJgnf4A34o-V3ObpEkedewLxjrWlT6GNEtkw9mZbg_796Z04IP4dO_lfNzDQegR8Atg4K8FxphKnvKUhI0LcoUi4IwlkBFyjaIOTjr8Ft217S5cjKUiQk-TVV4ui7iarafxeFTFi3yxzKvRKi7K9x67RzdOf7b24TIHqByP1sNpMs8ns-HbPDFpJo8JFcZoRy0jxuBMp4BDFG6pFZg4ooXYZLR2WDomtakp48wZADBSOmJqTMgAPfe-B998n2x7VLvm5L_CS0VwSCsZSAgs6FnGN23rrVMHv91rf1aAVVeF-lNF0JCLRu9rv9182F_r_1U_I8Fa8g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>ZHENG, JIWEI</creator><creator>ZHOU, WEI</creator><creator>TAYLOR, D. E.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9538-1915</orcidid><orcidid>https://orcid.org/0000-0003-2689-4746</orcidid><orcidid>https://orcid.org/0009-0007-2728-9499</orcidid></search><sort><creationdate>20240601</creationdate><title>GROUPS WITH FEW NONPOWER SUBGROUPS</title><author>ZHENG, JIWEI ; ZHOU, WEI ; TAYLOR, D. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-48ccaf4e53cc06a2102307e4e803f3a88d64bf09f59acb4575fc111c99f3cb033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHENG, JIWEI</creatorcontrib><creatorcontrib>ZHOU, WEI</creatorcontrib><creatorcontrib>TAYLOR, D. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHENG, JIWEI</au><au>ZHOU, WEI</au><au>TAYLOR, D. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GROUPS WITH FEW NONPOWER SUBGROUPS</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>109</volume><issue>3</issue><spage>529</spage><epage>540</epage><pages>529-540</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>For a group G and
$m\ge 1$
, let
$G^m$
denote the subgroup generated by the elements
$g^m$
, where g runs through G. The subgroups not of the form
$G^m$
are the nonpower subgroups of G. We classify the groups with at most nine nonpower subgroups.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972723000783</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9538-1915</orcidid><orcidid>https://orcid.org/0000-0003-2689-4746</orcidid><orcidid>https://orcid.org/0009-0007-2728-9499</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-9727 |
ispartof | Bulletin of the Australian Mathematical Society, 2024-06, Vol.109 (3), p.529-540 |
issn | 0004-9727 1755-1633 |
language | eng |
recordid | cdi_proquest_journals_3055295191 |
source | Cambridge Journals Online |
subjects | Subgroups |
title | GROUPS WITH FEW NONPOWER SUBGROUPS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GROUPS%20WITH%20FEW%20NONPOWER%20SUBGROUPS&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=ZHENG,%20JIWEI&rft.date=2024-06-01&rft.volume=109&rft.issue=3&rft.spage=529&rft.epage=540&rft.pages=529-540&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972723000783&rft_dat=%3Cproquest_cross%3E3055295191%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c269t-48ccaf4e53cc06a2102307e4e803f3a88d64bf09f59acb4575fc111c99f3cb033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055295191&rft_id=info:pmid/&rft_cupid=10_1017_S0004972723000783&rfr_iscdi=true |