Loading…

Theoretical study of the effect of ionization effect on the thermal conductivity of stannous oxide

Effectively modulating the thermal conductivity of materials is critical for meeting the various requirements of thermal-management devices. In this work, the influence of ionization on the phonon-transport properties of stannous oxide (SnO) was systematically investigated using first-principles cal...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2024-05, Vol.124 (20)
Main Authors: Wu, Yangke, Shi, Wei, He, Chaoyu, Li, Jin, Tang, Chao, Ouyang, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-2632115d39ea8740d761a371efb45299508eade9f7586b0b5c8e763d63fb01d63
container_end_page
container_issue 20
container_start_page
container_title Applied physics letters
container_volume 124
creator Wu, Yangke
Shi, Wei
He, Chaoyu
Li, Jin
Tang, Chao
Ouyang, Tao
description Effectively modulating the thermal conductivity of materials is critical for meeting the various requirements of thermal-management devices. In this work, the influence of ionization on the phonon-transport properties of stannous oxide (SnO) was systematically investigated using first-principles calculations combined with the Boltzmann transport equation. The results show that ionization has a positive effect on the thermal conductivity of SnO, and this phenomenon can be further enhanced with increased ionization magnitude. Specifically, it was found that the thermal conductivities of SnO along the x (y) and z directions could be increased by 35%/200% and 65%/300% after the removal of four and eight electrons, respectively, from neutral SnO. The phonon mode information implies that the enhancement of thermal conductivity mainly originates from the suppression of anharmonicity in the ionized SnO. This behavior was further demonstrated by analyzing the root mean square displacement and potential-well structure. More in-depth examination suggested that the enhancement of the thermal conductivity of SnO does not originate from the ionization itself, but from the internal strain in the lattice caused by the ionization. The findings presented in this work elucidate how ionization can impact thermal conductivity, providing theoretical guidance for modulating thermal conductivity at the electron level.
doi_str_mv 10.1063/5.0209607
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3055594177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055594177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-2632115d39ea8740d761a371efb45299508eade9f7586b0b5c8e763d63fb01d63</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_8GAK4XRm0mTTJZSfEHBTV2HTB40pZ3UJCPWX2_6wKWLy-FcvnMvHISuMdxjYOSB3kMDggE_QSMMnNcE4_YUjQCA1ExQfI4uUloWSxtCRqibL2yINnutVlXKg9lWwVV5YSvrnNV553zo_Y_KRf6W_R4pE9clp0NvBp39l8_7eMqq78OQqvDtjb1EZ06tkr066hh9PD_Np6_17P3lbfo4q3XT8lw3jDQYU0OEVS2fgOEMK8Kxdd2ENkJQaK0yVjhOW9ZBR3VrOSOGEdcBLjJGN4e7mxg-B5uyXIYh9uWlJEApFRPMeaFuD5SOIaVondxEv1ZxKzHIXYWSymOFhb07sEn7vC_gH_gXdeBwrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055594177</pqid></control><display><type>article</type><title>Theoretical study of the effect of ionization effect on the thermal conductivity of stannous oxide</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Wu, Yangke ; Shi, Wei ; He, Chaoyu ; Li, Jin ; Tang, Chao ; Ouyang, Tao</creator><creatorcontrib>Wu, Yangke ; Shi, Wei ; He, Chaoyu ; Li, Jin ; Tang, Chao ; Ouyang, Tao</creatorcontrib><description>Effectively modulating the thermal conductivity of materials is critical for meeting the various requirements of thermal-management devices. In this work, the influence of ionization on the phonon-transport properties of stannous oxide (SnO) was systematically investigated using first-principles calculations combined with the Boltzmann transport equation. The results show that ionization has a positive effect on the thermal conductivity of SnO, and this phenomenon can be further enhanced with increased ionization magnitude. Specifically, it was found that the thermal conductivities of SnO along the x (y) and z directions could be increased by 35%/200% and 65%/300% after the removal of four and eight electrons, respectively, from neutral SnO. The phonon mode information implies that the enhancement of thermal conductivity mainly originates from the suppression of anharmonicity in the ionized SnO. This behavior was further demonstrated by analyzing the root mean square displacement and potential-well structure. More in-depth examination suggested that the enhancement of the thermal conductivity of SnO does not originate from the ionization itself, but from the internal strain in the lattice caused by the ionization. The findings presented in this work elucidate how ionization can impact thermal conductivity, providing theoretical guidance for modulating thermal conductivity at the electron level.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0209607</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anharmonicity ; Boltzmann transport equation ; Conductivity ; Electrons ; First principles ; Heat conductivity ; Heat transfer ; Ionization ; Phonons ; Thermal conductivity ; Tin oxides ; Transport properties</subject><ispartof>Applied physics letters, 2024-05, Vol.124 (20)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-2632115d39ea8740d761a371efb45299508eade9f7586b0b5c8e763d63fb01d63</cites><orcidid>0009-0009-3803-4138 ; 0000-0003-3562-4537 ; 0000-0003-0748-4274 ; 0000-0003-1084-8294 ; 0000-0003-3741-0444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0209607$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Wu, Yangke</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>He, Chaoyu</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Tang, Chao</creatorcontrib><creatorcontrib>Ouyang, Tao</creatorcontrib><title>Theoretical study of the effect of ionization effect on the thermal conductivity of stannous oxide</title><title>Applied physics letters</title><description>Effectively modulating the thermal conductivity of materials is critical for meeting the various requirements of thermal-management devices. In this work, the influence of ionization on the phonon-transport properties of stannous oxide (SnO) was systematically investigated using first-principles calculations combined with the Boltzmann transport equation. The results show that ionization has a positive effect on the thermal conductivity of SnO, and this phenomenon can be further enhanced with increased ionization magnitude. Specifically, it was found that the thermal conductivities of SnO along the x (y) and z directions could be increased by 35%/200% and 65%/300% after the removal of four and eight electrons, respectively, from neutral SnO. The phonon mode information implies that the enhancement of thermal conductivity mainly originates from the suppression of anharmonicity in the ionized SnO. This behavior was further demonstrated by analyzing the root mean square displacement and potential-well structure. More in-depth examination suggested that the enhancement of the thermal conductivity of SnO does not originate from the ionization itself, but from the internal strain in the lattice caused by the ionization. The findings presented in this work elucidate how ionization can impact thermal conductivity, providing theoretical guidance for modulating thermal conductivity at the electron level.</description><subject>Anharmonicity</subject><subject>Boltzmann transport equation</subject><subject>Conductivity</subject><subject>Electrons</subject><subject>First principles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Ionization</subject><subject>Phonons</subject><subject>Thermal conductivity</subject><subject>Tin oxides</subject><subject>Transport properties</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_8GAK4XRm0mTTJZSfEHBTV2HTB40pZ3UJCPWX2_6wKWLy-FcvnMvHISuMdxjYOSB3kMDggE_QSMMnNcE4_YUjQCA1ExQfI4uUloWSxtCRqibL2yINnutVlXKg9lWwVV5YSvrnNV553zo_Y_KRf6W_R4pE9clp0NvBp39l8_7eMqq78OQqvDtjb1EZ06tkr066hh9PD_Np6_17P3lbfo4q3XT8lw3jDQYU0OEVS2fgOEMK8Kxdd2ENkJQaK0yVjhOW9ZBR3VrOSOGEdcBLjJGN4e7mxg-B5uyXIYh9uWlJEApFRPMeaFuD5SOIaVondxEv1ZxKzHIXYWSymOFhb07sEn7vC_gH_gXdeBwrA</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Wu, Yangke</creator><creator>Shi, Wei</creator><creator>He, Chaoyu</creator><creator>Li, Jin</creator><creator>Tang, Chao</creator><creator>Ouyang, Tao</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-3803-4138</orcidid><orcidid>https://orcid.org/0000-0003-3562-4537</orcidid><orcidid>https://orcid.org/0000-0003-0748-4274</orcidid><orcidid>https://orcid.org/0000-0003-1084-8294</orcidid><orcidid>https://orcid.org/0000-0003-3741-0444</orcidid></search><sort><creationdate>20240513</creationdate><title>Theoretical study of the effect of ionization effect on the thermal conductivity of stannous oxide</title><author>Wu, Yangke ; Shi, Wei ; He, Chaoyu ; Li, Jin ; Tang, Chao ; Ouyang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-2632115d39ea8740d761a371efb45299508eade9f7586b0b5c8e763d63fb01d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anharmonicity</topic><topic>Boltzmann transport equation</topic><topic>Conductivity</topic><topic>Electrons</topic><topic>First principles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Ionization</topic><topic>Phonons</topic><topic>Thermal conductivity</topic><topic>Tin oxides</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yangke</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>He, Chaoyu</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Tang, Chao</creatorcontrib><creatorcontrib>Ouyang, Tao</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yangke</au><au>Shi, Wei</au><au>He, Chaoyu</au><au>Li, Jin</au><au>Tang, Chao</au><au>Ouyang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study of the effect of ionization effect on the thermal conductivity of stannous oxide</atitle><jtitle>Applied physics letters</jtitle><date>2024-05-13</date><risdate>2024</risdate><volume>124</volume><issue>20</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Effectively modulating the thermal conductivity of materials is critical for meeting the various requirements of thermal-management devices. In this work, the influence of ionization on the phonon-transport properties of stannous oxide (SnO) was systematically investigated using first-principles calculations combined with the Boltzmann transport equation. The results show that ionization has a positive effect on the thermal conductivity of SnO, and this phenomenon can be further enhanced with increased ionization magnitude. Specifically, it was found that the thermal conductivities of SnO along the x (y) and z directions could be increased by 35%/200% and 65%/300% after the removal of four and eight electrons, respectively, from neutral SnO. The phonon mode information implies that the enhancement of thermal conductivity mainly originates from the suppression of anharmonicity in the ionized SnO. This behavior was further demonstrated by analyzing the root mean square displacement and potential-well structure. More in-depth examination suggested that the enhancement of the thermal conductivity of SnO does not originate from the ionization itself, but from the internal strain in the lattice caused by the ionization. The findings presented in this work elucidate how ionization can impact thermal conductivity, providing theoretical guidance for modulating thermal conductivity at the electron level.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0209607</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0009-3803-4138</orcidid><orcidid>https://orcid.org/0000-0003-3562-4537</orcidid><orcidid>https://orcid.org/0000-0003-0748-4274</orcidid><orcidid>https://orcid.org/0000-0003-1084-8294</orcidid><orcidid>https://orcid.org/0000-0003-3741-0444</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-05, Vol.124 (20)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_3055594177
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Anharmonicity
Boltzmann transport equation
Conductivity
Electrons
First principles
Heat conductivity
Heat transfer
Ionization
Phonons
Thermal conductivity
Tin oxides
Transport properties
title Theoretical study of the effect of ionization effect on the thermal conductivity of stannous oxide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20of%20the%20effect%20of%20ionization%20effect%20on%20the%20thermal%20conductivity%20of%20stannous%20oxide&rft.jtitle=Applied%20physics%20letters&rft.au=Wu,%20Yangke&rft.date=2024-05-13&rft.volume=124&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0209607&rft_dat=%3Cproquest_scita%3E3055594177%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-2632115d39ea8740d761a371efb45299508eade9f7586b0b5c8e763d63fb01d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055594177&rft_id=info:pmid/&rfr_iscdi=true