Loading…

Mechanism for the Broadened Linewidth in Antiferromagnetic Resonance

The linewidth of antiferromagnetic resonance (AFMR) is found to be significantly broader than that of ferromagnetic resonance (FMR), even when the intrinsic Gilbert damping parameter is the same for both systems. We investigate the origin of this enhanced damping rate in AFMR by studying a bipartite...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-05
Main Authors: Wang, Yutian, Jiang, Xiao
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Yutian
Jiang, Xiao
description The linewidth of antiferromagnetic resonance (AFMR) is found to be significantly broader than that of ferromagnetic resonance (FMR), even when the intrinsic Gilbert damping parameter is the same for both systems. We investigate the origin of this enhanced damping rate in AFMR by studying a bipartite magnet model. Through analytical calculations and numerical simulations, we present three perspectives on understanding this linewidth broadening in AFMR: i) The non-dissipative Heisenberg exchange interaction develops a damping-like component in the presence of Gilbert damping, ii) The transverse component of the exchange coupling reduces the AFMR frequency, thereby increasing the damping rate, and iii) The antiferromagnetic eigenmode exhibits characteristics of a two-mode squeezed state, which is inherently linked to an enhanced damping rate. Our findings provide a comprehensive understanding of the complex dynamics governing magnetic dissipation in antiferromagnet and offer insights into the experimentally observed broadened linewidths in AFMR spectra.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3056050684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056050684</sourcerecordid><originalsourceid>FETCH-proquest_journals_30560506843</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLsSkqV39xUEXcS-hvTEp9kaTFF9fBx_A6QzfmbBMSLkq6lKIGctj7DnnoloLpWTG9hdsrSYXBzA-QLII2-B1h4QdnB3h23XJgiPYUHIGQ_CDvhMm18IVoydNLS7Y1OhHxPzXOVseD7fdqXgG_xoxpqb3Y6AvNZKriite1aX87_oAP446ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056050684</pqid></control><display><type>article</type><title>Mechanism for the Broadened Linewidth in Antiferromagnetic Resonance</title><source>ProQuest - Publicly Available Content Database</source><creator>Wang, Yutian ; Jiang, Xiao</creator><creatorcontrib>Wang, Yutian ; Jiang, Xiao</creatorcontrib><description>The linewidth of antiferromagnetic resonance (AFMR) is found to be significantly broader than that of ferromagnetic resonance (FMR), even when the intrinsic Gilbert damping parameter is the same for both systems. We investigate the origin of this enhanced damping rate in AFMR by studying a bipartite magnet model. Through analytical calculations and numerical simulations, we present three perspectives on understanding this linewidth broadening in AFMR: i) The non-dissipative Heisenberg exchange interaction develops a damping-like component in the presence of Gilbert damping, ii) The transverse component of the exchange coupling reduces the AFMR frequency, thereby increasing the damping rate, and iii) The antiferromagnetic eigenmode exhibits characteristics of a two-mode squeezed state, which is inherently linked to an enhanced damping rate. Our findings provide a comprehensive understanding of the complex dynamics governing magnetic dissipation in antiferromagnet and offer insights into the experimentally observed broadened linewidths in AFMR spectra.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antiferromagnetism ; Damping ; Dissipation ; Ferromagnetic resonance ; Ferromagnetism ; Squeezed states (quantum theory)</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3056050684?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,36995,44573</link.rule.ids></links><search><creatorcontrib>Wang, Yutian</creatorcontrib><creatorcontrib>Jiang, Xiao</creatorcontrib><title>Mechanism for the Broadened Linewidth in Antiferromagnetic Resonance</title><title>arXiv.org</title><description>The linewidth of antiferromagnetic resonance (AFMR) is found to be significantly broader than that of ferromagnetic resonance (FMR), even when the intrinsic Gilbert damping parameter is the same for both systems. We investigate the origin of this enhanced damping rate in AFMR by studying a bipartite magnet model. Through analytical calculations and numerical simulations, we present three perspectives on understanding this linewidth broadening in AFMR: i) The non-dissipative Heisenberg exchange interaction develops a damping-like component in the presence of Gilbert damping, ii) The transverse component of the exchange coupling reduces the AFMR frequency, thereby increasing the damping rate, and iii) The antiferromagnetic eigenmode exhibits characteristics of a two-mode squeezed state, which is inherently linked to an enhanced damping rate. Our findings provide a comprehensive understanding of the complex dynamics governing magnetic dissipation in antiferromagnet and offer insights into the experimentally observed broadened linewidths in AFMR spectra.</description><subject>Antiferromagnetism</subject><subject>Damping</subject><subject>Dissipation</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetism</subject><subject>Squeezed states (quantum theory)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLsSkqV39xUEXcS-hvTEp9kaTFF9fBx_A6QzfmbBMSLkq6lKIGctj7DnnoloLpWTG9hdsrSYXBzA-QLII2-B1h4QdnB3h23XJgiPYUHIGQ_CDvhMm18IVoydNLS7Y1OhHxPzXOVseD7fdqXgG_xoxpqb3Y6AvNZKriite1aX87_oAP446ow</recordid><startdate>20240516</startdate><enddate>20240516</enddate><creator>Wang, Yutian</creator><creator>Jiang, Xiao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240516</creationdate><title>Mechanism for the Broadened Linewidth in Antiferromagnetic Resonance</title><author>Wang, Yutian ; Jiang, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30560506843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiferromagnetism</topic><topic>Damping</topic><topic>Dissipation</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetism</topic><topic>Squeezed states (quantum theory)</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yutian</creatorcontrib><creatorcontrib>Jiang, Xiao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yutian</au><au>Jiang, Xiao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mechanism for the Broadened Linewidth in Antiferromagnetic Resonance</atitle><jtitle>arXiv.org</jtitle><date>2024-05-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The linewidth of antiferromagnetic resonance (AFMR) is found to be significantly broader than that of ferromagnetic resonance (FMR), even when the intrinsic Gilbert damping parameter is the same for both systems. We investigate the origin of this enhanced damping rate in AFMR by studying a bipartite magnet model. Through analytical calculations and numerical simulations, we present three perspectives on understanding this linewidth broadening in AFMR: i) The non-dissipative Heisenberg exchange interaction develops a damping-like component in the presence of Gilbert damping, ii) The transverse component of the exchange coupling reduces the AFMR frequency, thereby increasing the damping rate, and iii) The antiferromagnetic eigenmode exhibits characteristics of a two-mode squeezed state, which is inherently linked to an enhanced damping rate. Our findings provide a comprehensive understanding of the complex dynamics governing magnetic dissipation in antiferromagnet and offer insights into the experimentally observed broadened linewidths in AFMR spectra.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3056050684
source ProQuest - Publicly Available Content Database
subjects Antiferromagnetism
Damping
Dissipation
Ferromagnetic resonance
Ferromagnetism
Squeezed states (quantum theory)
title Mechanism for the Broadened Linewidth in Antiferromagnetic Resonance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mechanism%20for%20the%20Broadened%20Linewidth%20in%20Antiferromagnetic%20Resonance&rft.jtitle=arXiv.org&rft.au=Wang,%20Yutian&rft.date=2024-05-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3056050684%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30560506843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3056050684&rft_id=info:pmid/&rfr_iscdi=true