Loading…
TP-PROFILE: Monitoring the Thermodynamic Structure of the Troposphere over the Third Pole
Ground-based microwave radiometers (MWRs) operating in the K- and V-bands (20–60 GHz) can help us obtain temperature and humidity profiles in the troposphere. Aside from some soundings from local meteorological observatories, the tropospheric atmosphere over the Tibetan Plateau (TP) has never been c...
Saved in:
Published in: | Advances in atmospheric sciences 2024-06, Vol.41 (6), p.1264-1277 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ground-based microwave radiometers (MWRs) operating in the K- and V-bands (20–60 GHz) can help us obtain temperature and humidity profiles in the troposphere. Aside from some soundings from local meteorological observatories, the tropospheric atmosphere over the Tibetan Plateau (TP) has never been continuously observed. As part of the Chinese Second Tibetan Plateau Scientific Expedition and Research Program (STEP), the Tibetan Plateau Atmospheric Profile (TP-PROFILE) project aims to construct a comprehensive MWR troposphere observation network to study the synoptic processes and environmental changes on the TP. This initiative has collected three years of data from the MWR network. This paper introduces the data information, the data quality, and data downloading. Some applications of the data obtained from these MWRs were also demonstrated. Our comparisons of MWR against the nearest radiosonde observation demonstrate that the TP-PROFILE MWR system is adequate for monitoring the thermal and moisture variability of the troposphere over the TP. The continuous temperature and moisture profiles derived from the MWR data provide a unique perspective on the evolution of the thermodynamic structure associated with the heating of the TP. The TP-PROFILE project reveals that the low-temporal resolution instruments are prone to large uncertainties in their vapor estimation in the mountain valleys on the TP. |
---|---|
ISSN: | 0256-1530 1861-9533 |
DOI: | 10.1007/s00376-023-3199-y |