Loading…

Simulating X-ray absorption spectroscopy of battery materials on a quantum computer

X-ray absorption spectroscopy is a crucial experimental technique for elucidating the mechanisms of structural degradation in battery materials. However, extracting information from the measured spectrum is challenging without high-quality simulations. In this work, we propose simulating near-edge X...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-05
Main Authors: Fomichev, Stepan, Hejazi, Kasra, Loaiza, Ignacio, Modjtaba Shokrian Zini, Delgado, Alain, Arne-Christian Voigt, Mueller, Jonathan E, Juan Miguel Arrazola
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fomichev, Stepan
Hejazi, Kasra
Loaiza, Ignacio
Modjtaba Shokrian Zini
Delgado, Alain
Arne-Christian Voigt
Mueller, Jonathan E
Juan Miguel Arrazola
description X-ray absorption spectroscopy is a crucial experimental technique for elucidating the mechanisms of structural degradation in battery materials. However, extracting information from the measured spectrum is challenging without high-quality simulations. In this work, we propose simulating near-edge X-ray absorption spectra as a promising application for quantum computing. It is attractive due to the ultralocal nature of X-ray absorption that significantly reduces the sizes of problems to be simulated, and because of the classical hardness of simulating spectra. We describe three quantum algorithms to compute the X-ray absorption spectrum and provide their asymptotic cost. One of these is a Monte-Carlo based time-domain algorithm, which is cost-friendly to early fault-tolerant quantum computers. We then apply the framework to an industrially relevant example, a CAS(22e,18o) active space for an O-Mn cluster in a Li-excess battery cathode, showing that practically useful simulations could be obtained with much fewer qubits and gates than ground-state energy estimation of the same material.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3057510502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057510502</sourcerecordid><originalsourceid>FETCH-proquest_journals_30575105023</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLqSJse6iuNfBrVxLKi1NbpqfoW9vBh_A6Qzf2bBCSFlXl5MQO1aGMHHOxbkRSsmCte1o0oxxtB94VR5XwHcg7-JIFoLTffQUenIr0ABvjFH7FQzmjDgHyBPCktDGZKAn41KWA9sOGXX5654d77fn9VE5T0vSIXYTJW8zdZKrRtVccSH_u762QED3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057510502</pqid></control><display><type>article</type><title>Simulating X-ray absorption spectroscopy of battery materials on a quantum computer</title><source>Publicly Available Content (ProQuest)</source><creator>Fomichev, Stepan ; Hejazi, Kasra ; Loaiza, Ignacio ; Modjtaba Shokrian Zini ; Delgado, Alain ; Arne-Christian Voigt ; Mueller, Jonathan E ; Juan Miguel Arrazola</creator><creatorcontrib>Fomichev, Stepan ; Hejazi, Kasra ; Loaiza, Ignacio ; Modjtaba Shokrian Zini ; Delgado, Alain ; Arne-Christian Voigt ; Mueller, Jonathan E ; Juan Miguel Arrazola</creatorcontrib><description>X-ray absorption spectroscopy is a crucial experimental technique for elucidating the mechanisms of structural degradation in battery materials. However, extracting information from the measured spectrum is challenging without high-quality simulations. In this work, we propose simulating near-edge X-ray absorption spectra as a promising application for quantum computing. It is attractive due to the ultralocal nature of X-ray absorption that significantly reduces the sizes of problems to be simulated, and because of the classical hardness of simulating spectra. We describe three quantum algorithms to compute the X-ray absorption spectrum and provide their asymptotic cost. One of these is a Monte-Carlo based time-domain algorithm, which is cost-friendly to early fault-tolerant quantum computers. We then apply the framework to an industrially relevant example, a CAS(22e,18o) active space for an O-Mn cluster in a Li-excess battery cathode, showing that practically useful simulations could be obtained with much fewer qubits and gates than ground-state energy estimation of the same material.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Absorption spectra ; Absorption spectroscopy ; Algorithms ; Cathodes ; Fault tolerance ; Quantum computers ; Quantum computing ; Qubits (quantum computing) ; Spectrum analysis ; X ray absorption</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3057510502?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Fomichev, Stepan</creatorcontrib><creatorcontrib>Hejazi, Kasra</creatorcontrib><creatorcontrib>Loaiza, Ignacio</creatorcontrib><creatorcontrib>Modjtaba Shokrian Zini</creatorcontrib><creatorcontrib>Delgado, Alain</creatorcontrib><creatorcontrib>Arne-Christian Voigt</creatorcontrib><creatorcontrib>Mueller, Jonathan E</creatorcontrib><creatorcontrib>Juan Miguel Arrazola</creatorcontrib><title>Simulating X-ray absorption spectroscopy of battery materials on a quantum computer</title><title>arXiv.org</title><description>X-ray absorption spectroscopy is a crucial experimental technique for elucidating the mechanisms of structural degradation in battery materials. However, extracting information from the measured spectrum is challenging without high-quality simulations. In this work, we propose simulating near-edge X-ray absorption spectra as a promising application for quantum computing. It is attractive due to the ultralocal nature of X-ray absorption that significantly reduces the sizes of problems to be simulated, and because of the classical hardness of simulating spectra. We describe three quantum algorithms to compute the X-ray absorption spectrum and provide their asymptotic cost. One of these is a Monte-Carlo based time-domain algorithm, which is cost-friendly to early fault-tolerant quantum computers. We then apply the framework to an industrially relevant example, a CAS(22e,18o) active space for an O-Mn cluster in a Li-excess battery cathode, showing that practically useful simulations could be obtained with much fewer qubits and gates than ground-state energy estimation of the same material.</description><subject>Absorption spectra</subject><subject>Absorption spectroscopy</subject><subject>Algorithms</subject><subject>Cathodes</subject><subject>Fault tolerance</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Spectrum analysis</subject><subject>X ray absorption</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLqSJse6iuNfBrVxLKi1NbpqfoW9vBh_A6Qzf2bBCSFlXl5MQO1aGMHHOxbkRSsmCte1o0oxxtB94VR5XwHcg7-JIFoLTffQUenIr0ABvjFH7FQzmjDgHyBPCktDGZKAn41KWA9sOGXX5654d77fn9VE5T0vSIXYTJW8zdZKrRtVccSH_u762QED3</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>Fomichev, Stepan</creator><creator>Hejazi, Kasra</creator><creator>Loaiza, Ignacio</creator><creator>Modjtaba Shokrian Zini</creator><creator>Delgado, Alain</creator><creator>Arne-Christian Voigt</creator><creator>Mueller, Jonathan E</creator><creator>Juan Miguel Arrazola</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240517</creationdate><title>Simulating X-ray absorption spectroscopy of battery materials on a quantum computer</title><author>Fomichev, Stepan ; Hejazi, Kasra ; Loaiza, Ignacio ; Modjtaba Shokrian Zini ; Delgado, Alain ; Arne-Christian Voigt ; Mueller, Jonathan E ; Juan Miguel Arrazola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30575105023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Absorption spectroscopy</topic><topic>Algorithms</topic><topic>Cathodes</topic><topic>Fault tolerance</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Spectrum analysis</topic><topic>X ray absorption</topic><toplevel>online_resources</toplevel><creatorcontrib>Fomichev, Stepan</creatorcontrib><creatorcontrib>Hejazi, Kasra</creatorcontrib><creatorcontrib>Loaiza, Ignacio</creatorcontrib><creatorcontrib>Modjtaba Shokrian Zini</creatorcontrib><creatorcontrib>Delgado, Alain</creatorcontrib><creatorcontrib>Arne-Christian Voigt</creatorcontrib><creatorcontrib>Mueller, Jonathan E</creatorcontrib><creatorcontrib>Juan Miguel Arrazola</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fomichev, Stepan</au><au>Hejazi, Kasra</au><au>Loaiza, Ignacio</au><au>Modjtaba Shokrian Zini</au><au>Delgado, Alain</au><au>Arne-Christian Voigt</au><au>Mueller, Jonathan E</au><au>Juan Miguel Arrazola</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Simulating X-ray absorption spectroscopy of battery materials on a quantum computer</atitle><jtitle>arXiv.org</jtitle><date>2024-05-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>X-ray absorption spectroscopy is a crucial experimental technique for elucidating the mechanisms of structural degradation in battery materials. However, extracting information from the measured spectrum is challenging without high-quality simulations. In this work, we propose simulating near-edge X-ray absorption spectra as a promising application for quantum computing. It is attractive due to the ultralocal nature of X-ray absorption that significantly reduces the sizes of problems to be simulated, and because of the classical hardness of simulating spectra. We describe three quantum algorithms to compute the X-ray absorption spectrum and provide their asymptotic cost. One of these is a Monte-Carlo based time-domain algorithm, which is cost-friendly to early fault-tolerant quantum computers. We then apply the framework to an industrially relevant example, a CAS(22e,18o) active space for an O-Mn cluster in a Li-excess battery cathode, showing that practically useful simulations could be obtained with much fewer qubits and gates than ground-state energy estimation of the same material.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3057510502
source Publicly Available Content (ProQuest)
subjects Absorption spectra
Absorption spectroscopy
Algorithms
Cathodes
Fault tolerance
Quantum computers
Quantum computing
Qubits (quantum computing)
Spectrum analysis
X ray absorption
title Simulating X-ray absorption spectroscopy of battery materials on a quantum computer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Simulating%20X-ray%20absorption%20spectroscopy%20of%20battery%20materials%20on%20a%20quantum%20computer&rft.jtitle=arXiv.org&rft.au=Fomichev,%20Stepan&rft.date=2024-05-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3057510502%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30575105023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3057510502&rft_id=info:pmid/&rfr_iscdi=true