Loading…

Emerging Opportunities for Ferroelectric Field‐Effect Transistors: Integration of 2D Materials

The rapid development in information technologies necessitates rapid advancements of their supporting hardware. In particular, new computing paradigms are needed to overcome the bottleneck of traditional von Neumann architecture. Bottom‐up innovation, especially at the materials and devices level, h...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-05, Vol.34 (21), p.n/a
Main Authors: Yang, Fang, Ng, Hong Kuan, Ju, Xin, Cai, Weifan, Cao, Jing, Chi, Dongzhi, Suwardi, Ady, Hu, Guangwei, Ni, Zhenhua, Wang, Xiao Renshaw, Lu, Junpeng, Wu, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rapid development in information technologies necessitates rapid advancements of their supporting hardware. In particular, new computing paradigms are needed to overcome the bottleneck of traditional von Neumann architecture. Bottom‐up innovation, especially at the materials and devices level, has the potential to disrupt existing technologies through their emergent phenomena. As a new type of conceptual device, 2D ferroelectric field‐effect transistor (FeFET) is highly sought after due to its potential integration with modern semiconductor processes. Its low power consumption, area efficiency, and ultra‐fast operation provide an extra edge over traditional technologies. This review highlights recent developments in 2D FeFET, covering their device construction, working mechanisms, 2D ferroelectric polarization mechanism, multi‐functional applications and prospects. In particular, the combination of 2D semiconductor and ferroelectric dielectric materials for multi‐functionality applications is discussed. This includes non‐volatile memories (NVM), neural network computing, non‐volatile logic operation, and photodetectors. As a novel device platform, 2D semiconductor and ferroelectric interfaces are bestowed with a plethora of emergent physical mechanisms and applications. An in‐depth examination of 2D FeFET advancements over recent years is provided in this review, including the working mechanism, structural evolution, as well as the diverse applications. Moreover, a summary of ongoing research efforts and offers further perspectives on the emerging opportunities for 2D FeFET is concluded.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202310438