Loading…

Multistatic Collaborative Imaging for Shipborne GNSS-S Radar: Method and Experimental Verification

Global navigation satellite system (GNSS) signals have many advantages, such as numerous satellites and global coverage. There will be huge application potential when utilized as electromagnetic illuminators to construct a passive radar. However, because of GNSS signal power limitations, the signal-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Main Authors: Gao, Wenning, Yue, Fuzhan, Xia, Zhenghuan, Xue, Changhu, Liu, Zongqiang, Zhao, Zhilong, Zhang, Chuang, Zhang, Yao, Cui, Zhiying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-6438ef2fca89bf9d469eeb0b02e1d70223af6868e5d751017e0660dd5aadfdbe3
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 21
creator Gao, Wenning
Yue, Fuzhan
Xia, Zhenghuan
Xue, Changhu
Liu, Zongqiang
Zhao, Zhilong
Zhang, Chuang
Zhang, Yao
Cui, Zhiying
description Global navigation satellite system (GNSS) signals have many advantages, such as numerous satellites and global coverage. There will be huge application potential when utilized as electromagnetic illuminators to construct a passive radar. However, because of GNSS signal power limitations, the signal-to-noise ratio (SNR) of single satellite imaging is often low and vulnerable to electromagnetic interference. The image quality will be greatly enhanced if the signal energy of several GNSS satellites can be fully exploited. However, it is a huge challenge to achieve the coherence of multisatellite signals because different satellites have distinct imaging geometries and motion Doppler. In order to suppress interference and produce images with a high SNR, this research presents a multistatic coherent synthetic aperture imaging method. To demodulate and decode the scattered echoes, a phase-locked loop (PLL) is first utilized to track direct signals from several satellites to create reference signals with constant phases. Then, secondary demodulation functions are constructed to remove the residual Doppler frequency. Finally, the back-projection algorithm is used to perform collaborative coherent imaging on multistatic GNSS echoes. A shipboard experiment was conducted to verify the method. A high-quality image of the ship was obtained in a synthetic aperture time of 3 s by collaborative imaging of six BDS satellites.
doi_str_mv 10.1109/LGRS.2024.3398577
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3058298331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10526383</ieee_id><sourcerecordid>3058298331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-6438ef2fca89bf9d469eeb0b02e1d70223af6868e5d751017e0660dd5aadfdbe3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxYMoWKsfQPCw4Dl1_2Q3G29StBZahUbF27LJzrYpaTZuUtFv74b24GneML95M7wouiZ4QgjO7hazVT6hmCYTxjLJ0_QkGhHOZYx5Sk4HnfCYZ_LzPLroui0OpJTpKCqW-7qvul73VYmmrq514XxovgHNd3pdNWtknUf5pmrDoAE0e8nzOEcrbbS_R0voN84g3Rj0-NOCr3bQ9LpGH0HaqgxGrrmMzqyuO7g61nH0_vT4Nn2OF6-z-fRhEZc0EX0sEibBUltqmRU2M4nIAApcYArEpJhSpq2QQgI3KSeYpICFwMZwrY01BbBxdHvwbb372kPXq63b-yacVAxzSTPJGAkUOVCld13nwao2fK39ryJYDVGqIUo1RKmOUYadm8NOBQD_eE4FC6Z_B-dw-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058298331</pqid></control><display><type>article</type><title>Multistatic Collaborative Imaging for Shipborne GNSS-S Radar: Method and Experimental Verification</title><source>IEEE Xplore (Online service)</source><creator>Gao, Wenning ; Yue, Fuzhan ; Xia, Zhenghuan ; Xue, Changhu ; Liu, Zongqiang ; Zhao, Zhilong ; Zhang, Chuang ; Zhang, Yao ; Cui, Zhiying</creator><creatorcontrib>Gao, Wenning ; Yue, Fuzhan ; Xia, Zhenghuan ; Xue, Changhu ; Liu, Zongqiang ; Zhao, Zhilong ; Zhang, Chuang ; Zhang, Yao ; Cui, Zhiying</creatorcontrib><description>Global navigation satellite system (GNSS) signals have many advantages, such as numerous satellites and global coverage. There will be huge application potential when utilized as electromagnetic illuminators to construct a passive radar. However, because of GNSS signal power limitations, the signal-to-noise ratio (SNR) of single satellite imaging is often low and vulnerable to electromagnetic interference. The image quality will be greatly enhanced if the signal energy of several GNSS satellites can be fully exploited. However, it is a huge challenge to achieve the coherence of multisatellite signals because different satellites have distinct imaging geometries and motion Doppler. In order to suppress interference and produce images with a high SNR, this research presents a multistatic coherent synthetic aperture imaging method. To demodulate and decode the scattered echoes, a phase-locked loop (PLL) is first utilized to track direct signals from several satellites to create reference signals with constant phases. Then, secondary demodulation functions are constructed to remove the residual Doppler frequency. Finally, the back-projection algorithm is used to perform collaborative coherent imaging on multistatic GNSS echoes. A shipboard experiment was conducted to verify the method. A high-quality image of the ship was obtained in a synthetic aperture time of 3 s by collaborative imaging of six BDS satellites.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3398577</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Aperture imaging ; Coherent scattering ; Collaboration ; Demodulation ; Doppler effect ; Doppler sonar ; Echoes ; Electromagnetic interference ; Global navigation satellite system ; Global navigation satellite system-based synthetic aperture radar technology (GNSS-S) radar ; Illuminators ; Image enhancement ; Image quality ; images fusion ; Imaging ; Interference ; maritime target imaging ; multistatic synthetic aperture radar (SAR) ; Navigation ; Navigation satellites ; Navigation systems ; Navigational satellites ; Phase locked loops ; Radar ; Radar antennas ; Radar imaging ; Reference signals ; Satellite imagery ; Satellite tracking ; Satellites ; Signal to noise ratio ; Spaceborne radar ; Synthetic apertures</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-6438ef2fca89bf9d469eeb0b02e1d70223af6868e5d751017e0660dd5aadfdbe3</cites><orcidid>0000-0003-4434-8757 ; 0000-0002-9792-7886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10526383$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Gao, Wenning</creatorcontrib><creatorcontrib>Yue, Fuzhan</creatorcontrib><creatorcontrib>Xia, Zhenghuan</creatorcontrib><creatorcontrib>Xue, Changhu</creatorcontrib><creatorcontrib>Liu, Zongqiang</creatorcontrib><creatorcontrib>Zhao, Zhilong</creatorcontrib><creatorcontrib>Zhang, Chuang</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Cui, Zhiying</creatorcontrib><title>Multistatic Collaborative Imaging for Shipborne GNSS-S Radar: Method and Experimental Verification</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Global navigation satellite system (GNSS) signals have many advantages, such as numerous satellites and global coverage. There will be huge application potential when utilized as electromagnetic illuminators to construct a passive radar. However, because of GNSS signal power limitations, the signal-to-noise ratio (SNR) of single satellite imaging is often low and vulnerable to electromagnetic interference. The image quality will be greatly enhanced if the signal energy of several GNSS satellites can be fully exploited. However, it is a huge challenge to achieve the coherence of multisatellite signals because different satellites have distinct imaging geometries and motion Doppler. In order to suppress interference and produce images with a high SNR, this research presents a multistatic coherent synthetic aperture imaging method. To demodulate and decode the scattered echoes, a phase-locked loop (PLL) is first utilized to track direct signals from several satellites to create reference signals with constant phases. Then, secondary demodulation functions are constructed to remove the residual Doppler frequency. Finally, the back-projection algorithm is used to perform collaborative coherent imaging on multistatic GNSS echoes. A shipboard experiment was conducted to verify the method. A high-quality image of the ship was obtained in a synthetic aperture time of 3 s by collaborative imaging of six BDS satellites.</description><subject>Algorithms</subject><subject>Aperture imaging</subject><subject>Coherent scattering</subject><subject>Collaboration</subject><subject>Demodulation</subject><subject>Doppler effect</subject><subject>Doppler sonar</subject><subject>Echoes</subject><subject>Electromagnetic interference</subject><subject>Global navigation satellite system</subject><subject>Global navigation satellite system-based synthetic aperture radar technology (GNSS-S) radar</subject><subject>Illuminators</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>images fusion</subject><subject>Imaging</subject><subject>Interference</subject><subject>maritime target imaging</subject><subject>multistatic synthetic aperture radar (SAR)</subject><subject>Navigation</subject><subject>Navigation satellites</subject><subject>Navigation systems</subject><subject>Navigational satellites</subject><subject>Phase locked loops</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar imaging</subject><subject>Reference signals</subject><subject>Satellite imagery</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Signal to noise ratio</subject><subject>Spaceborne radar</subject><subject>Synthetic apertures</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxYMoWKsfQPCw4Dl1_2Q3G29StBZahUbF27LJzrYpaTZuUtFv74b24GneML95M7wouiZ4QgjO7hazVT6hmCYTxjLJ0_QkGhHOZYx5Sk4HnfCYZ_LzPLroui0OpJTpKCqW-7qvul73VYmmrq514XxovgHNd3pdNWtknUf5pmrDoAE0e8nzOEcrbbS_R0voN84g3Rj0-NOCr3bQ9LpGH0HaqgxGrrmMzqyuO7g61nH0_vT4Nn2OF6-z-fRhEZc0EX0sEibBUltqmRU2M4nIAApcYArEpJhSpq2QQgI3KSeYpICFwMZwrY01BbBxdHvwbb372kPXq63b-yacVAxzSTPJGAkUOVCld13nwao2fK39ryJYDVGqIUo1RKmOUYadm8NOBQD_eE4FC6Z_B-dw-Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gao, Wenning</creator><creator>Yue, Fuzhan</creator><creator>Xia, Zhenghuan</creator><creator>Xue, Changhu</creator><creator>Liu, Zongqiang</creator><creator>Zhao, Zhilong</creator><creator>Zhang, Chuang</creator><creator>Zhang, Yao</creator><creator>Cui, Zhiying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4434-8757</orcidid><orcidid>https://orcid.org/0000-0002-9792-7886</orcidid></search><sort><creationdate>2024</creationdate><title>Multistatic Collaborative Imaging for Shipborne GNSS-S Radar: Method and Experimental Verification</title><author>Gao, Wenning ; Yue, Fuzhan ; Xia, Zhenghuan ; Xue, Changhu ; Liu, Zongqiang ; Zhao, Zhilong ; Zhang, Chuang ; Zhang, Yao ; Cui, Zhiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-6438ef2fca89bf9d469eeb0b02e1d70223af6868e5d751017e0660dd5aadfdbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Aperture imaging</topic><topic>Coherent scattering</topic><topic>Collaboration</topic><topic>Demodulation</topic><topic>Doppler effect</topic><topic>Doppler sonar</topic><topic>Echoes</topic><topic>Electromagnetic interference</topic><topic>Global navigation satellite system</topic><topic>Global navigation satellite system-based synthetic aperture radar technology (GNSS-S) radar</topic><topic>Illuminators</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>images fusion</topic><topic>Imaging</topic><topic>Interference</topic><topic>maritime target imaging</topic><topic>multistatic synthetic aperture radar (SAR)</topic><topic>Navigation</topic><topic>Navigation satellites</topic><topic>Navigation systems</topic><topic>Navigational satellites</topic><topic>Phase locked loops</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar imaging</topic><topic>Reference signals</topic><topic>Satellite imagery</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Signal to noise ratio</topic><topic>Spaceborne radar</topic><topic>Synthetic apertures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Wenning</creatorcontrib><creatorcontrib>Yue, Fuzhan</creatorcontrib><creatorcontrib>Xia, Zhenghuan</creatorcontrib><creatorcontrib>Xue, Changhu</creatorcontrib><creatorcontrib>Liu, Zongqiang</creatorcontrib><creatorcontrib>Zhao, Zhilong</creatorcontrib><creatorcontrib>Zhang, Chuang</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Cui, Zhiying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Wenning</au><au>Yue, Fuzhan</au><au>Xia, Zhenghuan</au><au>Xue, Changhu</au><au>Liu, Zongqiang</au><au>Zhao, Zhilong</au><au>Zhang, Chuang</au><au>Zhang, Yao</au><au>Cui, Zhiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistatic Collaborative Imaging for Shipborne GNSS-S Radar: Method and Experimental Verification</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Global navigation satellite system (GNSS) signals have many advantages, such as numerous satellites and global coverage. There will be huge application potential when utilized as electromagnetic illuminators to construct a passive radar. However, because of GNSS signal power limitations, the signal-to-noise ratio (SNR) of single satellite imaging is often low and vulnerable to electromagnetic interference. The image quality will be greatly enhanced if the signal energy of several GNSS satellites can be fully exploited. However, it is a huge challenge to achieve the coherence of multisatellite signals because different satellites have distinct imaging geometries and motion Doppler. In order to suppress interference and produce images with a high SNR, this research presents a multistatic coherent synthetic aperture imaging method. To demodulate and decode the scattered echoes, a phase-locked loop (PLL) is first utilized to track direct signals from several satellites to create reference signals with constant phases. Then, secondary demodulation functions are constructed to remove the residual Doppler frequency. Finally, the back-projection algorithm is used to perform collaborative coherent imaging on multistatic GNSS echoes. A shipboard experiment was conducted to verify the method. A high-quality image of the ship was obtained in a synthetic aperture time of 3 s by collaborative imaging of six BDS satellites.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3398577</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4434-8757</orcidid><orcidid>https://orcid.org/0000-0002-9792-7886</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_3058298331
source IEEE Xplore (Online service)
subjects Algorithms
Aperture imaging
Coherent scattering
Collaboration
Demodulation
Doppler effect
Doppler sonar
Echoes
Electromagnetic interference
Global navigation satellite system
Global navigation satellite system-based synthetic aperture radar technology (GNSS-S) radar
Illuminators
Image enhancement
Image quality
images fusion
Imaging
Interference
maritime target imaging
multistatic synthetic aperture radar (SAR)
Navigation
Navigation satellites
Navigation systems
Navigational satellites
Phase locked loops
Radar
Radar antennas
Radar imaging
Reference signals
Satellite imagery
Satellite tracking
Satellites
Signal to noise ratio
Spaceborne radar
Synthetic apertures
title Multistatic Collaborative Imaging for Shipborne GNSS-S Radar: Method and Experimental Verification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistatic%20Collaborative%20Imaging%20for%20Shipborne%20GNSS-S%20Radar:%20Method%20and%20Experimental%20Verification&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Gao,%20Wenning&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3398577&rft_dat=%3Cproquest_ieee_%3E3058298331%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-6438ef2fca89bf9d469eeb0b02e1d70223af6868e5d751017e0660dd5aadfdbe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3058298331&rft_id=info:pmid/&rft_ieee_id=10526383&rfr_iscdi=true