Loading…
Multistatic Collaborative Imaging for Shipborne GNSS-S Radar: Method and Experimental Verification
Global navigation satellite system (GNSS) signals have many advantages, such as numerous satellites and global coverage. There will be huge application potential when utilized as electromagnetic illuminators to construct a passive radar. However, because of GNSS signal power limitations, the signal-...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-6438ef2fca89bf9d469eeb0b02e1d70223af6868e5d751017e0660dd5aadfdbe3 |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 21 |
creator | Gao, Wenning Yue, Fuzhan Xia, Zhenghuan Xue, Changhu Liu, Zongqiang Zhao, Zhilong Zhang, Chuang Zhang, Yao Cui, Zhiying |
description | Global navigation satellite system (GNSS) signals have many advantages, such as numerous satellites and global coverage. There will be huge application potential when utilized as electromagnetic illuminators to construct a passive radar. However, because of GNSS signal power limitations, the signal-to-noise ratio (SNR) of single satellite imaging is often low and vulnerable to electromagnetic interference. The image quality will be greatly enhanced if the signal energy of several GNSS satellites can be fully exploited. However, it is a huge challenge to achieve the coherence of multisatellite signals because different satellites have distinct imaging geometries and motion Doppler. In order to suppress interference and produce images with a high SNR, this research presents a multistatic coherent synthetic aperture imaging method. To demodulate and decode the scattered echoes, a phase-locked loop (PLL) is first utilized to track direct signals from several satellites to create reference signals with constant phases. Then, secondary demodulation functions are constructed to remove the residual Doppler frequency. Finally, the back-projection algorithm is used to perform collaborative coherent imaging on multistatic GNSS echoes. A shipboard experiment was conducted to verify the method. A high-quality image of the ship was obtained in a synthetic aperture time of 3 s by collaborative imaging of six BDS satellites. |
doi_str_mv | 10.1109/LGRS.2024.3398577 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3058298331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10526383</ieee_id><sourcerecordid>3058298331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-6438ef2fca89bf9d469eeb0b02e1d70223af6868e5d751017e0660dd5aadfdbe3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxYMoWKsfQPCw4Dl1_2Q3G29StBZahUbF27LJzrYpaTZuUtFv74b24GneML95M7wouiZ4QgjO7hazVT6hmCYTxjLJ0_QkGhHOZYx5Sk4HnfCYZ_LzPLroui0OpJTpKCqW-7qvul73VYmmrq514XxovgHNd3pdNWtknUf5pmrDoAE0e8nzOEcrbbS_R0voN84g3Rj0-NOCr3bQ9LpGH0HaqgxGrrmMzqyuO7g61nH0_vT4Nn2OF6-z-fRhEZc0EX0sEibBUltqmRU2M4nIAApcYArEpJhSpq2QQgI3KSeYpICFwMZwrY01BbBxdHvwbb372kPXq63b-yacVAxzSTPJGAkUOVCld13nwao2fK39ryJYDVGqIUo1RKmOUYadm8NOBQD_eE4FC6Z_B-dw-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058298331</pqid></control><display><type>article</type><title>Multistatic Collaborative Imaging for Shipborne GNSS-S Radar: Method and Experimental Verification</title><source>IEEE Xplore (Online service)</source><creator>Gao, Wenning ; Yue, Fuzhan ; Xia, Zhenghuan ; Xue, Changhu ; Liu, Zongqiang ; Zhao, Zhilong ; Zhang, Chuang ; Zhang, Yao ; Cui, Zhiying</creator><creatorcontrib>Gao, Wenning ; Yue, Fuzhan ; Xia, Zhenghuan ; Xue, Changhu ; Liu, Zongqiang ; Zhao, Zhilong ; Zhang, Chuang ; Zhang, Yao ; Cui, Zhiying</creatorcontrib><description>Global navigation satellite system (GNSS) signals have many advantages, such as numerous satellites and global coverage. There will be huge application potential when utilized as electromagnetic illuminators to construct a passive radar. However, because of GNSS signal power limitations, the signal-to-noise ratio (SNR) of single satellite imaging is often low and vulnerable to electromagnetic interference. The image quality will be greatly enhanced if the signal energy of several GNSS satellites can be fully exploited. However, it is a huge challenge to achieve the coherence of multisatellite signals because different satellites have distinct imaging geometries and motion Doppler. In order to suppress interference and produce images with a high SNR, this research presents a multistatic coherent synthetic aperture imaging method. To demodulate and decode the scattered echoes, a phase-locked loop (PLL) is first utilized to track direct signals from several satellites to create reference signals with constant phases. Then, secondary demodulation functions are constructed to remove the residual Doppler frequency. Finally, the back-projection algorithm is used to perform collaborative coherent imaging on multistatic GNSS echoes. A shipboard experiment was conducted to verify the method. A high-quality image of the ship was obtained in a synthetic aperture time of 3 s by collaborative imaging of six BDS satellites.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3398577</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Aperture imaging ; Coherent scattering ; Collaboration ; Demodulation ; Doppler effect ; Doppler sonar ; Echoes ; Electromagnetic interference ; Global navigation satellite system ; Global navigation satellite system-based synthetic aperture radar technology (GNSS-S) radar ; Illuminators ; Image enhancement ; Image quality ; images fusion ; Imaging ; Interference ; maritime target imaging ; multistatic synthetic aperture radar (SAR) ; Navigation ; Navigation satellites ; Navigation systems ; Navigational satellites ; Phase locked loops ; Radar ; Radar antennas ; Radar imaging ; Reference signals ; Satellite imagery ; Satellite tracking ; Satellites ; Signal to noise ratio ; Spaceborne radar ; Synthetic apertures</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-6438ef2fca89bf9d469eeb0b02e1d70223af6868e5d751017e0660dd5aadfdbe3</cites><orcidid>0000-0003-4434-8757 ; 0000-0002-9792-7886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10526383$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Gao, Wenning</creatorcontrib><creatorcontrib>Yue, Fuzhan</creatorcontrib><creatorcontrib>Xia, Zhenghuan</creatorcontrib><creatorcontrib>Xue, Changhu</creatorcontrib><creatorcontrib>Liu, Zongqiang</creatorcontrib><creatorcontrib>Zhao, Zhilong</creatorcontrib><creatorcontrib>Zhang, Chuang</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Cui, Zhiying</creatorcontrib><title>Multistatic Collaborative Imaging for Shipborne GNSS-S Radar: Method and Experimental Verification</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Global navigation satellite system (GNSS) signals have many advantages, such as numerous satellites and global coverage. There will be huge application potential when utilized as electromagnetic illuminators to construct a passive radar. However, because of GNSS signal power limitations, the signal-to-noise ratio (SNR) of single satellite imaging is often low and vulnerable to electromagnetic interference. The image quality will be greatly enhanced if the signal energy of several GNSS satellites can be fully exploited. However, it is a huge challenge to achieve the coherence of multisatellite signals because different satellites have distinct imaging geometries and motion Doppler. In order to suppress interference and produce images with a high SNR, this research presents a multistatic coherent synthetic aperture imaging method. To demodulate and decode the scattered echoes, a phase-locked loop (PLL) is first utilized to track direct signals from several satellites to create reference signals with constant phases. Then, secondary demodulation functions are constructed to remove the residual Doppler frequency. Finally, the back-projection algorithm is used to perform collaborative coherent imaging on multistatic GNSS echoes. A shipboard experiment was conducted to verify the method. A high-quality image of the ship was obtained in a synthetic aperture time of 3 s by collaborative imaging of six BDS satellites.</description><subject>Algorithms</subject><subject>Aperture imaging</subject><subject>Coherent scattering</subject><subject>Collaboration</subject><subject>Demodulation</subject><subject>Doppler effect</subject><subject>Doppler sonar</subject><subject>Echoes</subject><subject>Electromagnetic interference</subject><subject>Global navigation satellite system</subject><subject>Global navigation satellite system-based synthetic aperture radar technology (GNSS-S) radar</subject><subject>Illuminators</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>images fusion</subject><subject>Imaging</subject><subject>Interference</subject><subject>maritime target imaging</subject><subject>multistatic synthetic aperture radar (SAR)</subject><subject>Navigation</subject><subject>Navigation satellites</subject><subject>Navigation systems</subject><subject>Navigational satellites</subject><subject>Phase locked loops</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar imaging</subject><subject>Reference signals</subject><subject>Satellite imagery</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Signal to noise ratio</subject><subject>Spaceborne radar</subject><subject>Synthetic apertures</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxYMoWKsfQPCw4Dl1_2Q3G29StBZahUbF27LJzrYpaTZuUtFv74b24GneML95M7wouiZ4QgjO7hazVT6hmCYTxjLJ0_QkGhHOZYx5Sk4HnfCYZ_LzPLroui0OpJTpKCqW-7qvul73VYmmrq514XxovgHNd3pdNWtknUf5pmrDoAE0e8nzOEcrbbS_R0voN84g3Rj0-NOCr3bQ9LpGH0HaqgxGrrmMzqyuO7g61nH0_vT4Nn2OF6-z-fRhEZc0EX0sEibBUltqmRU2M4nIAApcYArEpJhSpq2QQgI3KSeYpICFwMZwrY01BbBxdHvwbb372kPXq63b-yacVAxzSTPJGAkUOVCld13nwao2fK39ryJYDVGqIUo1RKmOUYadm8NOBQD_eE4FC6Z_B-dw-Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gao, Wenning</creator><creator>Yue, Fuzhan</creator><creator>Xia, Zhenghuan</creator><creator>Xue, Changhu</creator><creator>Liu, Zongqiang</creator><creator>Zhao, Zhilong</creator><creator>Zhang, Chuang</creator><creator>Zhang, Yao</creator><creator>Cui, Zhiying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4434-8757</orcidid><orcidid>https://orcid.org/0000-0002-9792-7886</orcidid></search><sort><creationdate>2024</creationdate><title>Multistatic Collaborative Imaging for Shipborne GNSS-S Radar: Method and Experimental Verification</title><author>Gao, Wenning ; Yue, Fuzhan ; Xia, Zhenghuan ; Xue, Changhu ; Liu, Zongqiang ; Zhao, Zhilong ; Zhang, Chuang ; Zhang, Yao ; Cui, Zhiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-6438ef2fca89bf9d469eeb0b02e1d70223af6868e5d751017e0660dd5aadfdbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Aperture imaging</topic><topic>Coherent scattering</topic><topic>Collaboration</topic><topic>Demodulation</topic><topic>Doppler effect</topic><topic>Doppler sonar</topic><topic>Echoes</topic><topic>Electromagnetic interference</topic><topic>Global navigation satellite system</topic><topic>Global navigation satellite system-based synthetic aperture radar technology (GNSS-S) radar</topic><topic>Illuminators</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>images fusion</topic><topic>Imaging</topic><topic>Interference</topic><topic>maritime target imaging</topic><topic>multistatic synthetic aperture radar (SAR)</topic><topic>Navigation</topic><topic>Navigation satellites</topic><topic>Navigation systems</topic><topic>Navigational satellites</topic><topic>Phase locked loops</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar imaging</topic><topic>Reference signals</topic><topic>Satellite imagery</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Signal to noise ratio</topic><topic>Spaceborne radar</topic><topic>Synthetic apertures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Wenning</creatorcontrib><creatorcontrib>Yue, Fuzhan</creatorcontrib><creatorcontrib>Xia, Zhenghuan</creatorcontrib><creatorcontrib>Xue, Changhu</creatorcontrib><creatorcontrib>Liu, Zongqiang</creatorcontrib><creatorcontrib>Zhao, Zhilong</creatorcontrib><creatorcontrib>Zhang, Chuang</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Cui, Zhiying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Wenning</au><au>Yue, Fuzhan</au><au>Xia, Zhenghuan</au><au>Xue, Changhu</au><au>Liu, Zongqiang</au><au>Zhao, Zhilong</au><au>Zhang, Chuang</au><au>Zhang, Yao</au><au>Cui, Zhiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistatic Collaborative Imaging for Shipborne GNSS-S Radar: Method and Experimental Verification</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Global navigation satellite system (GNSS) signals have many advantages, such as numerous satellites and global coverage. There will be huge application potential when utilized as electromagnetic illuminators to construct a passive radar. However, because of GNSS signal power limitations, the signal-to-noise ratio (SNR) of single satellite imaging is often low and vulnerable to electromagnetic interference. The image quality will be greatly enhanced if the signal energy of several GNSS satellites can be fully exploited. However, it is a huge challenge to achieve the coherence of multisatellite signals because different satellites have distinct imaging geometries and motion Doppler. In order to suppress interference and produce images with a high SNR, this research presents a multistatic coherent synthetic aperture imaging method. To demodulate and decode the scattered echoes, a phase-locked loop (PLL) is first utilized to track direct signals from several satellites to create reference signals with constant phases. Then, secondary demodulation functions are constructed to remove the residual Doppler frequency. Finally, the back-projection algorithm is used to perform collaborative coherent imaging on multistatic GNSS echoes. A shipboard experiment was conducted to verify the method. A high-quality image of the ship was obtained in a synthetic aperture time of 3 s by collaborative imaging of six BDS satellites.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3398577</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4434-8757</orcidid><orcidid>https://orcid.org/0000-0002-9792-7886</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_3058298331 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Aperture imaging Coherent scattering Collaboration Demodulation Doppler effect Doppler sonar Echoes Electromagnetic interference Global navigation satellite system Global navigation satellite system-based synthetic aperture radar technology (GNSS-S) radar Illuminators Image enhancement Image quality images fusion Imaging Interference maritime target imaging multistatic synthetic aperture radar (SAR) Navigation Navigation satellites Navigation systems Navigational satellites Phase locked loops Radar Radar antennas Radar imaging Reference signals Satellite imagery Satellite tracking Satellites Signal to noise ratio Spaceborne radar Synthetic apertures |
title | Multistatic Collaborative Imaging for Shipborne GNSS-S Radar: Method and Experimental Verification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistatic%20Collaborative%20Imaging%20for%20Shipborne%20GNSS-S%20Radar:%20Method%20and%20Experimental%20Verification&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Gao,%20Wenning&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3398577&rft_dat=%3Cproquest_ieee_%3E3058298331%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-6438ef2fca89bf9d469eeb0b02e1d70223af6868e5d751017e0660dd5aadfdbe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3058298331&rft_id=info:pmid/&rft_ieee_id=10526383&rfr_iscdi=true |