Loading…

LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning

In enhancing LinkedIn core content recommendation models, a significant challenge lies in improving their semantic understanding capabilities. This paper addresses the problem by leveraging multi-task learning, a method that has shown promise in various domains. We fine-tune a pre-trained, transform...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-07
Main Authors: Bindal, Akanksha, Ramanujam, Sudarshan, Golland, Dave, Hazen, T J, Jiang, Tina, Zhang, Fengyu, Peng, Yan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bindal, Akanksha
Ramanujam, Sudarshan
Golland, Dave
Hazen, T J
Jiang, Tina
Zhang, Fengyu
Peng, Yan
description In enhancing LinkedIn core content recommendation models, a significant challenge lies in improving their semantic understanding capabilities. This paper addresses the problem by leveraging multi-task learning, a method that has shown promise in various domains. We fine-tune a pre-trained, transformer-based LLM using multi-task contrastive learning with data from a diverse set of semantic labeling tasks. We observe positive transfer, leading to superior performance across all tasks when compared to training independently on each. Our model outperforms the baseline on zero shot learning and offers improved multilingual support, highlighting its potential for broader application. The specialized content embeddings produced by our model outperform generalized embeddings offered by OpenAI on Linkedin dataset and tasks. This work provides a robust foundation for vertical teams across LinkedIn to customize and fine-tune the LLM to their specific applications. Our work offers insights and best practices for the field to build on.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3058328767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3058328767</sourcerecordid><originalsourceid>FETCH-proquest_journals_30583287673</originalsourceid><addsrcrecordid>eNqNjc0KgkAURocgSMp3GGgt2Ez-0FaMAoMWRZtAhrzWmM3U3KvPn0gP0OpbnO9wJswTUq6CdC3EjPmITRiGIk5EFEmPXQt9tEgbvn-9ne2h4pk1BIb42VTgkJSptLnzi6YHz-sabqR74GcEbmt-6FrSASl8jppTONIClDODtWDTWrUI_m_nbLnNT9kuGFKfDpDKxnbODKiUYZRKkSZxIv97fQGzDkNr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058328767</pqid></control><display><type>article</type><title>LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning</title><source>Publicly Available Content Database</source><creator>Bindal, Akanksha ; Ramanujam, Sudarshan ; Golland, Dave ; Hazen, T J ; Jiang, Tina ; Zhang, Fengyu ; Peng, Yan</creator><creatorcontrib>Bindal, Akanksha ; Ramanujam, Sudarshan ; Golland, Dave ; Hazen, T J ; Jiang, Tina ; Zhang, Fengyu ; Peng, Yan</creatorcontrib><description>In enhancing LinkedIn core content recommendation models, a significant challenge lies in improving their semantic understanding capabilities. This paper addresses the problem by leveraging multi-task learning, a method that has shown promise in various domains. We fine-tune a pre-trained, transformer-based LLM using multi-task contrastive learning with data from a diverse set of semantic labeling tasks. We observe positive transfer, leading to superior performance across all tasks when compared to training independently on each. Our model outperforms the baseline on zero shot learning and offers improved multilingual support, highlighting its potential for broader application. The specialized content embeddings produced by our model outperform generalized embeddings offered by OpenAI on Linkedin dataset and tasks. This work provides a robust foundation for vertical teams across LinkedIn to customize and fine-tune the LLM to their specific applications. Our work offers insights and best practices for the field to build on.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Best practice ; Semantics ; Zero-shot learning</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3058328767?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Bindal, Akanksha</creatorcontrib><creatorcontrib>Ramanujam, Sudarshan</creatorcontrib><creatorcontrib>Golland, Dave</creatorcontrib><creatorcontrib>Hazen, T J</creatorcontrib><creatorcontrib>Jiang, Tina</creatorcontrib><creatorcontrib>Zhang, Fengyu</creatorcontrib><creatorcontrib>Peng, Yan</creatorcontrib><title>LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning</title><title>arXiv.org</title><description>In enhancing LinkedIn core content recommendation models, a significant challenge lies in improving their semantic understanding capabilities. This paper addresses the problem by leveraging multi-task learning, a method that has shown promise in various domains. We fine-tune a pre-trained, transformer-based LLM using multi-task contrastive learning with data from a diverse set of semantic labeling tasks. We observe positive transfer, leading to superior performance across all tasks when compared to training independently on each. Our model outperforms the baseline on zero shot learning and offers improved multilingual support, highlighting its potential for broader application. The specialized content embeddings produced by our model outperform generalized embeddings offered by OpenAI on Linkedin dataset and tasks. This work provides a robust foundation for vertical teams across LinkedIn to customize and fine-tune the LLM to their specific applications. Our work offers insights and best practices for the field to build on.</description><subject>Best practice</subject><subject>Semantics</subject><subject>Zero-shot learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjc0KgkAURocgSMp3GGgt2Ez-0FaMAoMWRZtAhrzWmM3U3KvPn0gP0OpbnO9wJswTUq6CdC3EjPmITRiGIk5EFEmPXQt9tEgbvn-9ne2h4pk1BIb42VTgkJSptLnzi6YHz-sabqR74GcEbmt-6FrSASl8jppTONIClDODtWDTWrUI_m_nbLnNT9kuGFKfDpDKxnbODKiUYZRKkSZxIv97fQGzDkNr</recordid><startdate>20240713</startdate><enddate>20240713</enddate><creator>Bindal, Akanksha</creator><creator>Ramanujam, Sudarshan</creator><creator>Golland, Dave</creator><creator>Hazen, T J</creator><creator>Jiang, Tina</creator><creator>Zhang, Fengyu</creator><creator>Peng, Yan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240713</creationdate><title>LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning</title><author>Bindal, Akanksha ; Ramanujam, Sudarshan ; Golland, Dave ; Hazen, T J ; Jiang, Tina ; Zhang, Fengyu ; Peng, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30583287673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Best practice</topic><topic>Semantics</topic><topic>Zero-shot learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Bindal, Akanksha</creatorcontrib><creatorcontrib>Ramanujam, Sudarshan</creatorcontrib><creatorcontrib>Golland, Dave</creatorcontrib><creatorcontrib>Hazen, T J</creatorcontrib><creatorcontrib>Jiang, Tina</creatorcontrib><creatorcontrib>Zhang, Fengyu</creatorcontrib><creatorcontrib>Peng, Yan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bindal, Akanksha</au><au>Ramanujam, Sudarshan</au><au>Golland, Dave</au><au>Hazen, T J</au><au>Jiang, Tina</au><au>Zhang, Fengyu</au><au>Peng, Yan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-07-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In enhancing LinkedIn core content recommendation models, a significant challenge lies in improving their semantic understanding capabilities. This paper addresses the problem by leveraging multi-task learning, a method that has shown promise in various domains. We fine-tune a pre-trained, transformer-based LLM using multi-task contrastive learning with data from a diverse set of semantic labeling tasks. We observe positive transfer, leading to superior performance across all tasks when compared to training independently on each. Our model outperforms the baseline on zero shot learning and offers improved multilingual support, highlighting its potential for broader application. The specialized content embeddings produced by our model outperform generalized embeddings offered by OpenAI on Linkedin dataset and tasks. This work provides a robust foundation for vertical teams across LinkedIn to customize and fine-tune the LLM to their specific applications. Our work offers insights and best practices for the field to build on.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3058328767
source Publicly Available Content Database
subjects Best practice
Semantics
Zero-shot learning
title LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=LiPost:%20Improved%20Content%20Understanding%20With%20Effective%20Use%20of%20Multi-task%20Contrastive%20Learning&rft.jtitle=arXiv.org&rft.au=Bindal,%20Akanksha&rft.date=2024-07-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3058328767%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30583287673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3058328767&rft_id=info:pmid/&rfr_iscdi=true