Loading…
LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning
In enhancing LinkedIn core content recommendation models, a significant challenge lies in improving their semantic understanding capabilities. This paper addresses the problem by leveraging multi-task learning, a method that has shown promise in various domains. We fine-tune a pre-trained, transform...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bindal, Akanksha Ramanujam, Sudarshan Golland, Dave Hazen, T J Jiang, Tina Zhang, Fengyu Peng, Yan |
description | In enhancing LinkedIn core content recommendation models, a significant challenge lies in improving their semantic understanding capabilities. This paper addresses the problem by leveraging multi-task learning, a method that has shown promise in various domains. We fine-tune a pre-trained, transformer-based LLM using multi-task contrastive learning with data from a diverse set of semantic labeling tasks. We observe positive transfer, leading to superior performance across all tasks when compared to training independently on each. Our model outperforms the baseline on zero shot learning and offers improved multilingual support, highlighting its potential for broader application. The specialized content embeddings produced by our model outperform generalized embeddings offered by OpenAI on Linkedin dataset and tasks. This work provides a robust foundation for vertical teams across LinkedIn to customize and fine-tune the LLM to their specific applications. Our work offers insights and best practices for the field to build on. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3058328767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3058328767</sourcerecordid><originalsourceid>FETCH-proquest_journals_30583287673</originalsourceid><addsrcrecordid>eNqNjc0KgkAURocgSMp3GGgt2Ez-0FaMAoMWRZtAhrzWmM3U3KvPn0gP0OpbnO9wJswTUq6CdC3EjPmITRiGIk5EFEmPXQt9tEgbvn-9ne2h4pk1BIb42VTgkJSptLnzi6YHz-sabqR74GcEbmt-6FrSASl8jppTONIClDODtWDTWrUI_m_nbLnNT9kuGFKfDpDKxnbODKiUYZRKkSZxIv97fQGzDkNr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058328767</pqid></control><display><type>article</type><title>LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning</title><source>Publicly Available Content Database</source><creator>Bindal, Akanksha ; Ramanujam, Sudarshan ; Golland, Dave ; Hazen, T J ; Jiang, Tina ; Zhang, Fengyu ; Peng, Yan</creator><creatorcontrib>Bindal, Akanksha ; Ramanujam, Sudarshan ; Golland, Dave ; Hazen, T J ; Jiang, Tina ; Zhang, Fengyu ; Peng, Yan</creatorcontrib><description>In enhancing LinkedIn core content recommendation models, a significant challenge lies in improving their semantic understanding capabilities. This paper addresses the problem by leveraging multi-task learning, a method that has shown promise in various domains. We fine-tune a pre-trained, transformer-based LLM using multi-task contrastive learning with data from a diverse set of semantic labeling tasks. We observe positive transfer, leading to superior performance across all tasks when compared to training independently on each. Our model outperforms the baseline on zero shot learning and offers improved multilingual support, highlighting its potential for broader application. The specialized content embeddings produced by our model outperform generalized embeddings offered by OpenAI on Linkedin dataset and tasks. This work provides a robust foundation for vertical teams across LinkedIn to customize and fine-tune the LLM to their specific applications. Our work offers insights and best practices for the field to build on.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Best practice ; Semantics ; Zero-shot learning</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3058328767?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Bindal, Akanksha</creatorcontrib><creatorcontrib>Ramanujam, Sudarshan</creatorcontrib><creatorcontrib>Golland, Dave</creatorcontrib><creatorcontrib>Hazen, T J</creatorcontrib><creatorcontrib>Jiang, Tina</creatorcontrib><creatorcontrib>Zhang, Fengyu</creatorcontrib><creatorcontrib>Peng, Yan</creatorcontrib><title>LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning</title><title>arXiv.org</title><description>In enhancing LinkedIn core content recommendation models, a significant challenge lies in improving their semantic understanding capabilities. This paper addresses the problem by leveraging multi-task learning, a method that has shown promise in various domains. We fine-tune a pre-trained, transformer-based LLM using multi-task contrastive learning with data from a diverse set of semantic labeling tasks. We observe positive transfer, leading to superior performance across all tasks when compared to training independently on each. Our model outperforms the baseline on zero shot learning and offers improved multilingual support, highlighting its potential for broader application. The specialized content embeddings produced by our model outperform generalized embeddings offered by OpenAI on Linkedin dataset and tasks. This work provides a robust foundation for vertical teams across LinkedIn to customize and fine-tune the LLM to their specific applications. Our work offers insights and best practices for the field to build on.</description><subject>Best practice</subject><subject>Semantics</subject><subject>Zero-shot learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjc0KgkAURocgSMp3GGgt2Ez-0FaMAoMWRZtAhrzWmM3U3KvPn0gP0OpbnO9wJswTUq6CdC3EjPmITRiGIk5EFEmPXQt9tEgbvn-9ne2h4pk1BIb42VTgkJSptLnzi6YHz-sabqR74GcEbmt-6FrSASl8jppTONIClDODtWDTWrUI_m_nbLnNT9kuGFKfDpDKxnbODKiUYZRKkSZxIv97fQGzDkNr</recordid><startdate>20240713</startdate><enddate>20240713</enddate><creator>Bindal, Akanksha</creator><creator>Ramanujam, Sudarshan</creator><creator>Golland, Dave</creator><creator>Hazen, T J</creator><creator>Jiang, Tina</creator><creator>Zhang, Fengyu</creator><creator>Peng, Yan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240713</creationdate><title>LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning</title><author>Bindal, Akanksha ; Ramanujam, Sudarshan ; Golland, Dave ; Hazen, T J ; Jiang, Tina ; Zhang, Fengyu ; Peng, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30583287673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Best practice</topic><topic>Semantics</topic><topic>Zero-shot learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Bindal, Akanksha</creatorcontrib><creatorcontrib>Ramanujam, Sudarshan</creatorcontrib><creatorcontrib>Golland, Dave</creatorcontrib><creatorcontrib>Hazen, T J</creatorcontrib><creatorcontrib>Jiang, Tina</creatorcontrib><creatorcontrib>Zhang, Fengyu</creatorcontrib><creatorcontrib>Peng, Yan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bindal, Akanksha</au><au>Ramanujam, Sudarshan</au><au>Golland, Dave</au><au>Hazen, T J</au><au>Jiang, Tina</au><au>Zhang, Fengyu</au><au>Peng, Yan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-07-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In enhancing LinkedIn core content recommendation models, a significant challenge lies in improving their semantic understanding capabilities. This paper addresses the problem by leveraging multi-task learning, a method that has shown promise in various domains. We fine-tune a pre-trained, transformer-based LLM using multi-task contrastive learning with data from a diverse set of semantic labeling tasks. We observe positive transfer, leading to superior performance across all tasks when compared to training independently on each. Our model outperforms the baseline on zero shot learning and offers improved multilingual support, highlighting its potential for broader application. The specialized content embeddings produced by our model outperform generalized embeddings offered by OpenAI on Linkedin dataset and tasks. This work provides a robust foundation for vertical teams across LinkedIn to customize and fine-tune the LLM to their specific applications. Our work offers insights and best practices for the field to build on.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3058328767 |
source | Publicly Available Content Database |
subjects | Best practice Semantics Zero-shot learning |
title | LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=LiPost:%20Improved%20Content%20Understanding%20With%20Effective%20Use%20of%20Multi-task%20Contrastive%20Learning&rft.jtitle=arXiv.org&rft.au=Bindal,%20Akanksha&rft.date=2024-07-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3058328767%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30583287673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3058328767&rft_id=info:pmid/&rfr_iscdi=true |