Loading…

Grade prediction of rock burst based on PSO-RVM model

A broad and accurate rock burst prediction model is crucial for preventing rock burst disasters in engineering. The relevance vector machine (RVM) algorithm based on the particle swarm optimization (PSO) is proposed for its prediction in this paper. The PSO is used to optimize the kernel parameter i...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Earth and environmental science 2024-05, Vol.1337 (1), p.12020
Main Authors: Kuang, H W, Ai, Z Y, Gu, G L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c288t-76acae443ece623ff28a87f5054dc9bb5ced1f49838e3487c50926253d4cb8d63
container_end_page
container_issue 1
container_start_page 12020
container_title IOP conference series. Earth and environmental science
container_volume 1337
creator Kuang, H W
Ai, Z Y
Gu, G L
description A broad and accurate rock burst prediction model is crucial for preventing rock burst disasters in engineering. The relevance vector machine (RVM) algorithm based on the particle swarm optimization (PSO) is proposed for its prediction in this paper. The PSO is used to optimize the kernel parameter inside the RVM, while the RVM is applied to complete the prediction task. Firstly, according to a series of existing classification standards and theoretical research of rock burst, three impact indicators and four rock burst grades are summarized. Next, the PSO-RVM model is trained by the cross-validation method with main indicators as input and rock burst grades as output. Then, the universality and accuracy of the proposed model are verified by different engineering samples. Finally, a specific engineering case is used to verify the practicality of the model, and the prediction accuracy of rock burst grade is up to 100%.
doi_str_mv 10.1088/1755-1315/1337/1/012020
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3058801006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3058801006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-76acae443ece623ff28a87f5054dc9bb5ced1f49838e3487c50926253d4cb8d63</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZ_gwuePMTsZ3ZzlBKrUKlY9bps9gNS227cTQ_-exMiFUHwNMPM877DvABcYnSDkZQ5FpxnmGKeY0pFjnOECSLoCEwOm-NDj8QpOEtpjVAhGC0ngM-jtg620dnGdE3YweBhDOYd1vuYOljr5Czsx0-rZfb89gi3wbrNOTjxepPcxXedgte76mV2ny2W84fZ7SIzRMouE4U22jFGnXEFod4TqaXwHHFmTVnX3DiLPSsllY4yKQxHJSkIp5aZWtqCTsHV6NvG8LF3qVPrsI-7_qSiiEuJcP9IT4mRMjGkFJ1XbWy2On4qjNSQkRq-V0MSashIYTVm1CuvR2UT2h_rqlr95lRrfc_SP9j_LnwBMetzgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058801006</pqid></control><display><type>article</type><title>Grade prediction of rock burst based on PSO-RVM model</title><source>Publicly Available Content (ProQuest)</source><creator>Kuang, H W ; Ai, Z Y ; Gu, G L</creator><creatorcontrib>Kuang, H W ; Ai, Z Y ; Gu, G L</creatorcontrib><description>A broad and accurate rock burst prediction model is crucial for preventing rock burst disasters in engineering. The relevance vector machine (RVM) algorithm based on the particle swarm optimization (PSO) is proposed for its prediction in this paper. The PSO is used to optimize the kernel parameter inside the RVM, while the RVM is applied to complete the prediction task. Firstly, according to a series of existing classification standards and theoretical research of rock burst, three impact indicators and four rock burst grades are summarized. Next, the PSO-RVM model is trained by the cross-validation method with main indicators as input and rock burst grades as output. Then, the universality and accuracy of the proposed model are verified by different engineering samples. Finally, a specific engineering case is used to verify the practicality of the model, and the prediction accuracy of rock burst grade is up to 100%.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/1337/1/012020</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Indicators ; Machine learning ; Model accuracy ; Optimization ; Prediction models ; Rockbursts ; Rocks ; Swarm intelligence</subject><ispartof>IOP conference series. Earth and environmental science, 2024-05, Vol.1337 (1), p.12020</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-76acae443ece623ff28a87f5054dc9bb5ced1f49838e3487c50926253d4cb8d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3058801006?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Kuang, H W</creatorcontrib><creatorcontrib>Ai, Z Y</creatorcontrib><creatorcontrib>Gu, G L</creatorcontrib><title>Grade prediction of rock burst based on PSO-RVM model</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>A broad and accurate rock burst prediction model is crucial for preventing rock burst disasters in engineering. The relevance vector machine (RVM) algorithm based on the particle swarm optimization (PSO) is proposed for its prediction in this paper. The PSO is used to optimize the kernel parameter inside the RVM, while the RVM is applied to complete the prediction task. Firstly, according to a series of existing classification standards and theoretical research of rock burst, three impact indicators and four rock burst grades are summarized. Next, the PSO-RVM model is trained by the cross-validation method with main indicators as input and rock burst grades as output. Then, the universality and accuracy of the proposed model are verified by different engineering samples. Finally, a specific engineering case is used to verify the practicality of the model, and the prediction accuracy of rock burst grade is up to 100%.</description><subject>Algorithms</subject><subject>Indicators</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Rockbursts</subject><subject>Rocks</subject><subject>Swarm intelligence</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkE1Lw0AQhhdRsFZ_gwuePMTsZ3ZzlBKrUKlY9bps9gNS227cTQ_-exMiFUHwNMPM877DvABcYnSDkZQ5FpxnmGKeY0pFjnOECSLoCEwOm-NDj8QpOEtpjVAhGC0ngM-jtg620dnGdE3YweBhDOYd1vuYOljr5Czsx0-rZfb89gi3wbrNOTjxepPcxXedgte76mV2ny2W84fZ7SIzRMouE4U22jFGnXEFod4TqaXwHHFmTVnX3DiLPSsllY4yKQxHJSkIp5aZWtqCTsHV6NvG8LF3qVPrsI-7_qSiiEuJcP9IT4mRMjGkFJ1XbWy2On4qjNSQkRq-V0MSashIYTVm1CuvR2UT2h_rqlr95lRrfc_SP9j_LnwBMetzgA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Kuang, H W</creator><creator>Ai, Z Y</creator><creator>Gu, G L</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20240501</creationdate><title>Grade prediction of rock burst based on PSO-RVM model</title><author>Kuang, H W ; Ai, Z Y ; Gu, G L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-76acae443ece623ff28a87f5054dc9bb5ced1f49838e3487c50926253d4cb8d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Indicators</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Rockbursts</topic><topic>Rocks</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuang, H W</creatorcontrib><creatorcontrib>Ai, Z Y</creatorcontrib><creatorcontrib>Gu, G L</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuang, H W</au><au>Ai, Z Y</au><au>Gu, G L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grade prediction of rock burst based on PSO-RVM model</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>1337</volume><issue>1</issue><spage>12020</spage><pages>12020-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>A broad and accurate rock burst prediction model is crucial for preventing rock burst disasters in engineering. The relevance vector machine (RVM) algorithm based on the particle swarm optimization (PSO) is proposed for its prediction in this paper. The PSO is used to optimize the kernel parameter inside the RVM, while the RVM is applied to complete the prediction task. Firstly, according to a series of existing classification standards and theoretical research of rock burst, three impact indicators and four rock burst grades are summarized. Next, the PSO-RVM model is trained by the cross-validation method with main indicators as input and rock burst grades as output. Then, the universality and accuracy of the proposed model are verified by different engineering samples. Finally, a specific engineering case is used to verify the practicality of the model, and the prediction accuracy of rock burst grade is up to 100%.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/1337/1/012020</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2024-05, Vol.1337 (1), p.12020
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_3058801006
source Publicly Available Content (ProQuest)
subjects Algorithms
Indicators
Machine learning
Model accuracy
Optimization
Prediction models
Rockbursts
Rocks
Swarm intelligence
title Grade prediction of rock burst based on PSO-RVM model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grade%20prediction%20of%20rock%20burst%20based%20on%20PSO-RVM%20model&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Kuang,%20H%20W&rft.date=2024-05-01&rft.volume=1337&rft.issue=1&rft.spage=12020&rft.pages=12020-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/1337/1/012020&rft_dat=%3Cproquest_iop_j%3E3058801006%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-76acae443ece623ff28a87f5054dc9bb5ced1f49838e3487c50926253d4cb8d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3058801006&rft_id=info:pmid/&rfr_iscdi=true