Loading…
Automatic and manual prediction of epileptic seizures based on ECG
This study presents a new attempt to quantify and predict changes in the ECG signal in the pre-ictal period. In the proposed approach, threshold techniques were applied to the standard deviation of two heart rate variability features (The number of heartbeats per two minutes and approximate entropy)...
Saved in:
Published in: | Signal, image and video processing image and video processing, 2024-07, Vol.18 (5), p.4175-4190 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-2fa9f6457989cc1a7df46487d90527c2baf23355b683c05add75f2bdb2fca8023 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-2fa9f6457989cc1a7df46487d90527c2baf23355b683c05add75f2bdb2fca8023 |
container_end_page | 4190 |
container_issue | 5 |
container_start_page | 4175 |
container_title | Signal, image and video processing |
container_volume | 18 |
creator | Ben Mbarek, Manef Assali, Ines Hamdi, Salah Ben Abdallah, Asma David, Olivier Aissi, Mouna Carrere, Marcel Bedoui, Mohamed Hedi |
description | This study presents a new attempt to quantify and predict changes in the ECG signal in the pre-ictal period. In the proposed approach, threshold techniques were applied to the standard deviation of two heart rate variability features (The number of heartbeats per two minutes and approximate entropy) computed to ensure prediction and quantification of the pre-ictal state. We analyzed clinical data taken from two epileptic public databases, Siena scalp EEG and post-ictal heart rate oscillations in partial epilepsy and a local database. By testing the proposed approach on the Siena scalp EEG database, we achieved a sensitivity of 100%, specificity of 95%, and an accuracy of 96.4% whereas using acquisitions from the post-ictal database, we achieved a sensitivity of 100%, specificity of 91% and an accuracy of 94% and using the local database we achieved a sensitivity of 100%, a specificity of 97% and an accuracy of 97.5%. Furthermore, the proposed approach predicted 58.7%, 57.2, and 40% of the seizures before the onset by more than 10 min for the data taken from post-ictal, local and Siena database, respectively. Using the automatic threshold technique, we were able to achieve a sensitivity, specificity, and accuracy of 85%, 81%, 82% using our local database, respectively, whereas using acquisitions take from the Siena scalp EEG database, we achieved a sensitivity of 75%, specificity of 85% and an accuracy of 82%. Besides, using the post-ictal database, we achieved a sensitivity of 90%, a specificity of 83% and an accuracy of 85%. |
doi_str_mv | 10.1007/s11760-024-03063-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3059398455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059398455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2fa9f6457989cc1a7df46487d90527c2baf23355b683c05add75f2bdb2fca8023</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKeA59VJstkkx1pqFQpe9Byy-SNb2t012YXqpzd1RW_OZR7Me2_gh9A1gVsCIO4SIaKCAmhZAIOKFcczNCMyCyIIOf_VwC7RIqUd5GFUyErO0P1yHLqDGRqLTevwwbSj2eM-etfYoela3AXs-2bv-5Ml-eZzjD7h2iTvcD6vV5srdBHMPvnFz56j14f1y-qx2D5vnlbLbWEZUUNBg1GhKrlQUllLjHChrEopnAJOhaW1CZQxzutKMgvcOCd4oLWrabBGAmVzdDP19rF7H30a9K4bY5tfagZcMSVLzrOLTi4bu5SiD7qPzcHED01An3DpCZfOuPQ3Ln3MITaFUja3bz7-Vf-T-gLP8mzW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059398455</pqid></control><display><type>article</type><title>Automatic and manual prediction of epileptic seizures based on ECG</title><source>Springer Nature</source><creator>Ben Mbarek, Manef ; Assali, Ines ; Hamdi, Salah ; Ben Abdallah, Asma ; David, Olivier ; Aissi, Mouna ; Carrere, Marcel ; Bedoui, Mohamed Hedi</creator><creatorcontrib>Ben Mbarek, Manef ; Assali, Ines ; Hamdi, Salah ; Ben Abdallah, Asma ; David, Olivier ; Aissi, Mouna ; Carrere, Marcel ; Bedoui, Mohamed Hedi</creatorcontrib><description>This study presents a new attempt to quantify and predict changes in the ECG signal in the pre-ictal period. In the proposed approach, threshold techniques were applied to the standard deviation of two heart rate variability features (The number of heartbeats per two minutes and approximate entropy) computed to ensure prediction and quantification of the pre-ictal state. We analyzed clinical data taken from two epileptic public databases, Siena scalp EEG and post-ictal heart rate oscillations in partial epilepsy and a local database. By testing the proposed approach on the Siena scalp EEG database, we achieved a sensitivity of 100%, specificity of 95%, and an accuracy of 96.4% whereas using acquisitions from the post-ictal database, we achieved a sensitivity of 100%, specificity of 91% and an accuracy of 94% and using the local database we achieved a sensitivity of 100%, a specificity of 97% and an accuracy of 97.5%. Furthermore, the proposed approach predicted 58.7%, 57.2, and 40% of the seizures before the onset by more than 10 min for the data taken from post-ictal, local and Siena database, respectively. Using the automatic threshold technique, we were able to achieve a sensitivity, specificity, and accuracy of 85%, 81%, 82% using our local database, respectively, whereas using acquisitions take from the Siena scalp EEG database, we achieved a sensitivity of 75%, specificity of 85% and an accuracy of 82%. Besides, using the post-ictal database, we achieved a sensitivity of 90%, a specificity of 83% and an accuracy of 85%.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-024-03063-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Computer Imaging ; Computer Science ; Convulsions & seizures ; Electroencephalography ; Epilepsy ; Heart rate ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Seizures ; Sensitivity ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2024-07, Vol.18 (5), p.4175-4190</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2fa9f6457989cc1a7df46487d90527c2baf23355b683c05add75f2bdb2fca8023</citedby><cites>FETCH-LOGICAL-c319t-2fa9f6457989cc1a7df46487d90527c2baf23355b683c05add75f2bdb2fca8023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ben Mbarek, Manef</creatorcontrib><creatorcontrib>Assali, Ines</creatorcontrib><creatorcontrib>Hamdi, Salah</creatorcontrib><creatorcontrib>Ben Abdallah, Asma</creatorcontrib><creatorcontrib>David, Olivier</creatorcontrib><creatorcontrib>Aissi, Mouna</creatorcontrib><creatorcontrib>Carrere, Marcel</creatorcontrib><creatorcontrib>Bedoui, Mohamed Hedi</creatorcontrib><title>Automatic and manual prediction of epileptic seizures based on ECG</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>This study presents a new attempt to quantify and predict changes in the ECG signal in the pre-ictal period. In the proposed approach, threshold techniques were applied to the standard deviation of two heart rate variability features (The number of heartbeats per two minutes and approximate entropy) computed to ensure prediction and quantification of the pre-ictal state. We analyzed clinical data taken from two epileptic public databases, Siena scalp EEG and post-ictal heart rate oscillations in partial epilepsy and a local database. By testing the proposed approach on the Siena scalp EEG database, we achieved a sensitivity of 100%, specificity of 95%, and an accuracy of 96.4% whereas using acquisitions from the post-ictal database, we achieved a sensitivity of 100%, specificity of 91% and an accuracy of 94% and using the local database we achieved a sensitivity of 100%, a specificity of 97% and an accuracy of 97.5%. Furthermore, the proposed approach predicted 58.7%, 57.2, and 40% of the seizures before the onset by more than 10 min for the data taken from post-ictal, local and Siena database, respectively. Using the automatic threshold technique, we were able to achieve a sensitivity, specificity, and accuracy of 85%, 81%, 82% using our local database, respectively, whereas using acquisitions take from the Siena scalp EEG database, we achieved a sensitivity of 75%, specificity of 85% and an accuracy of 82%. Besides, using the post-ictal database, we achieved a sensitivity of 90%, a specificity of 83% and an accuracy of 85%.</description><subject>Accuracy</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Convulsions & seizures</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Heart rate</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Seizures</subject><subject>Sensitivity</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGq_gKeA59VJstkkx1pqFQpe9Byy-SNb2t012YXqpzd1RW_OZR7Me2_gh9A1gVsCIO4SIaKCAmhZAIOKFcczNCMyCyIIOf_VwC7RIqUd5GFUyErO0P1yHLqDGRqLTevwwbSj2eM-etfYoela3AXs-2bv-5Ml-eZzjD7h2iTvcD6vV5srdBHMPvnFz56j14f1y-qx2D5vnlbLbWEZUUNBg1GhKrlQUllLjHChrEopnAJOhaW1CZQxzutKMgvcOCd4oLWrabBGAmVzdDP19rF7H30a9K4bY5tfagZcMSVLzrOLTi4bu5SiD7qPzcHED01An3DpCZfOuPQ3Ln3MITaFUja3bz7-Vf-T-gLP8mzW</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Ben Mbarek, Manef</creator><creator>Assali, Ines</creator><creator>Hamdi, Salah</creator><creator>Ben Abdallah, Asma</creator><creator>David, Olivier</creator><creator>Aissi, Mouna</creator><creator>Carrere, Marcel</creator><creator>Bedoui, Mohamed Hedi</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Automatic and manual prediction of epileptic seizures based on ECG</title><author>Ben Mbarek, Manef ; Assali, Ines ; Hamdi, Salah ; Ben Abdallah, Asma ; David, Olivier ; Aissi, Mouna ; Carrere, Marcel ; Bedoui, Mohamed Hedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2fa9f6457989cc1a7df46487d90527c2baf23355b683c05add75f2bdb2fca8023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Convulsions & seizures</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Heart rate</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Seizures</topic><topic>Sensitivity</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Mbarek, Manef</creatorcontrib><creatorcontrib>Assali, Ines</creatorcontrib><creatorcontrib>Hamdi, Salah</creatorcontrib><creatorcontrib>Ben Abdallah, Asma</creatorcontrib><creatorcontrib>David, Olivier</creatorcontrib><creatorcontrib>Aissi, Mouna</creatorcontrib><creatorcontrib>Carrere, Marcel</creatorcontrib><creatorcontrib>Bedoui, Mohamed Hedi</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Mbarek, Manef</au><au>Assali, Ines</au><au>Hamdi, Salah</au><au>Ben Abdallah, Asma</au><au>David, Olivier</au><au>Aissi, Mouna</au><au>Carrere, Marcel</au><au>Bedoui, Mohamed Hedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic and manual prediction of epileptic seizures based on ECG</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>18</volume><issue>5</issue><spage>4175</spage><epage>4190</epage><pages>4175-4190</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>This study presents a new attempt to quantify and predict changes in the ECG signal in the pre-ictal period. In the proposed approach, threshold techniques were applied to the standard deviation of two heart rate variability features (The number of heartbeats per two minutes and approximate entropy) computed to ensure prediction and quantification of the pre-ictal state. We analyzed clinical data taken from two epileptic public databases, Siena scalp EEG and post-ictal heart rate oscillations in partial epilepsy and a local database. By testing the proposed approach on the Siena scalp EEG database, we achieved a sensitivity of 100%, specificity of 95%, and an accuracy of 96.4% whereas using acquisitions from the post-ictal database, we achieved a sensitivity of 100%, specificity of 91% and an accuracy of 94% and using the local database we achieved a sensitivity of 100%, a specificity of 97% and an accuracy of 97.5%. Furthermore, the proposed approach predicted 58.7%, 57.2, and 40% of the seizures before the onset by more than 10 min for the data taken from post-ictal, local and Siena database, respectively. Using the automatic threshold technique, we were able to achieve a sensitivity, specificity, and accuracy of 85%, 81%, 82% using our local database, respectively, whereas using acquisitions take from the Siena scalp EEG database, we achieved a sensitivity of 75%, specificity of 85% and an accuracy of 82%. Besides, using the post-ictal database, we achieved a sensitivity of 90%, a specificity of 83% and an accuracy of 85%.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-024-03063-x</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2024-07, Vol.18 (5), p.4175-4190 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_3059398455 |
source | Springer Nature |
subjects | Accuracy Computer Imaging Computer Science Convulsions & seizures Electroencephalography Epilepsy Heart rate Image Processing and Computer Vision Multimedia Information Systems Original Paper Pattern Recognition and Graphics Seizures Sensitivity Signal,Image and Speech Processing Vision |
title | Automatic and manual prediction of epileptic seizures based on ECG |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20and%20manual%20prediction%20of%20epileptic%20seizures%20based%20on%20ECG&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Ben%20Mbarek,%20Manef&rft.date=2024-07-01&rft.volume=18&rft.issue=5&rft.spage=4175&rft.epage=4190&rft.pages=4175-4190&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-024-03063-x&rft_dat=%3Cproquest_cross%3E3059398455%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-2fa9f6457989cc1a7df46487d90527c2baf23355b683c05add75f2bdb2fca8023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059398455&rft_id=info:pmid/&rfr_iscdi=true |