Loading…
Preparation of n-Tetradecane Phase Change Microencapsulated Polyurethane Coating and Experiment on Anti-Icing Performance for Wind Turbine Blades
Icing is a common physical phenomenon, and the icing of wind turbine blades can significantly affect the performance of wind turbines. Therefore, researching methods to prevent icing is of great significance, and the coating method of anti-icing is an effective way to delay icing, with advantages su...
Saved in:
Published in: | Coatings (Basel) 2024-05, Vol.14 (5), p.645 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Icing is a common physical phenomenon, and the icing of wind turbine blades can significantly affect the performance of wind turbines. Therefore, researching methods to prevent icing is of great significance, and the coating method of anti-icing is an effective way to delay icing, with advantages such as low energy consumption and easy implementation. In this study, using the coating method as the background, tetradecane phase change microcapsules were prepared, with a melting enthalpy of 90.8 J/g and a crystallization enthalpy of 96.3 J/g, exhibiting good coverage and energy storage efficiency. After mixing tetradecane phase change microcapsules (PCMS) with polyurethane coating (PUR) and coating them on wind turbine blades, after a 5 min icing wind tunnel test, the coating could significantly delay the icing on the blade surface, with the highest anti-icing rate reaching 60.41%. This indicates that the coating has a good anti-icing effect and provides basic research data for exploring new anti-icing methods. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings14050645 |