Loading…

Preparation of n-Tetradecane Phase Change Microencapsulated Polyurethane Coating and Experiment on Anti-Icing Performance for Wind Turbine Blades

Icing is a common physical phenomenon, and the icing of wind turbine blades can significantly affect the performance of wind turbines. Therefore, researching methods to prevent icing is of great significance, and the coating method of anti-icing is an effective way to delay icing, with advantages su...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2024-05, Vol.14 (5), p.645
Main Authors: Wang, Yiting, Shen, He, Sun, Zheng, Li, Yan, Feng, Fang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Icing is a common physical phenomenon, and the icing of wind turbine blades can significantly affect the performance of wind turbines. Therefore, researching methods to prevent icing is of great significance, and the coating method of anti-icing is an effective way to delay icing, with advantages such as low energy consumption and easy implementation. In this study, using the coating method as the background, tetradecane phase change microcapsules were prepared, with a melting enthalpy of 90.8 J/g and a crystallization enthalpy of 96.3 J/g, exhibiting good coverage and energy storage efficiency. After mixing tetradecane phase change microcapsules (PCMS) with polyurethane coating (PUR) and coating them on wind turbine blades, after a 5 min icing wind tunnel test, the coating could significantly delay the icing on the blade surface, with the highest anti-icing rate reaching 60.41%. This indicates that the coating has a good anti-icing effect and provides basic research data for exploring new anti-icing methods.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings14050645