Loading…
Development of New Polyimide/Spirulina Hybrid Materials: Preparation and Characterization
This study presents the synthesis and characterization of polyimide (PI-2) films incorporated with spirulina powder for potential biomedical applications. The synthesis of PI-2 was achieved through a two-step polycondensation reaction using N-methyl-2-pyrrolidone (NMP) as the solvent. The incorporat...
Saved in:
Published in: | Journal of composites science 2024-05, Vol.8 (5), p.178 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study presents the synthesis and characterization of polyimide (PI-2) films incorporated with spirulina powder for potential biomedical applications. The synthesis of PI-2 was achieved through a two-step polycondensation reaction using N-methyl-2-pyrrolidone (NMP) as the solvent. The incorporation of spirulina was systematically varied to investigate its effects on the structural and surface properties of the hybrid materials. Scanning electron microscopy revealed a tightly bound interface between spirulina and the PI-2 matrix, indicating effective dispersion and strong interfacial adhesion. Profilometry and Raman spectroscopy confirmed the homogeneous integration of spirulina within the polymer matrix, with resulting variations in surface roughness and chemistry. Contact angle measurements demonstrated altered wettability characteristics, with increased hydrophilicity observed with spirulina incorporation. Furthermore, blood component interaction studies indicated the variations in adhesion behavior observed for red blood cells, platelets, and plasma proteins. Water uptake studies revealed enhanced absorption capacity in PI-2 films loaded with spirulina, highlighting their potential suitability for applications requiring controlled hydration. Overall, this comprehensive characterization elucidates the potential of PI-2/spirulina hybrid materials for diverse biomedical applications, offering tunable properties that can be tailored to specific requirements. |
---|---|
ISSN: | 2504-477X 2504-477X |
DOI: | 10.3390/jcs8050178 |