Loading…

The Influence of Polyphenolic Compounds on Anaerobic Digestion of Pepper Processing Waste during Biogas and Biomethane Production

Pepper processing waste has the potential to be used as a substrate in the process of anaerobic digestion, but because of its high polyphenol content, certain limitations are expected. During the determination of the biodegradability of pepper samples, a biogas potential of 687 L/kg DM was observed,...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2024-05, Vol.12 (5), p.913
Main Authors: Zupančič, Gregor Drago, Lončar, Anamarija, Ranilović, Jasmina, Šubarić, Drago, Panjičko, Mario
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pepper processing waste has the potential to be used as a substrate in the process of anaerobic digestion, but because of its high polyphenol content, certain limitations are expected. During the determination of the biodegradability of pepper samples, a biogas potential of 687 L/kg DM was observed, as well as a biomethane potential of 401 L/kg DM. While both the testing of biodegradability and the process in the pilot scale progressed, it was observed that total polyphenol content in both cases decreased. Also, as far as individual polyphenols during the process in the pilot scale are concerned, it can be observed that at the end of the process no procyanidin A2, epicatechin, myricetin, and quercetin were detected. The observed concentration of the ferulic acid on the last day of the process was 0.09 µg/g. Finally, it can be concluded that the presence of polyphenols did not significantly affect the biogas potential of pepper waste. Due to its relatively stable biogas production, as far as biogas production on the pilot scale is concerned, it can be concluded that pepper processing waste has the potential to be used as a substrate for biogas production.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr12050913