Loading…

Using Particle-on-a-Ring to Predict Carbon–Carbon Bond Length of Synthesized Porphyrins

Experiments that explore quantum principles while utilizing and reinforcing previous synthesis skills are excellent for engaging students and promoting the interconnected nature of chemistry. This experiment utilizes sophomore-level organic synthesis techniques to have students produce their own mes...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical education 2024-05, Vol.101 (5), p.2103-2109
Main Authors: Deslauriers, Courtney H., Knurr, Benjamin J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a267t-31f856cebaa203116de75406dc9f8e24e12fa4b3ec94b0dc4c0f7870e339f7913
container_end_page 2109
container_issue 5
container_start_page 2103
container_title Journal of chemical education
container_volume 101
creator Deslauriers, Courtney H.
Knurr, Benjamin J.
description Experiments that explore quantum principles while utilizing and reinforcing previous synthesis skills are excellent for engaging students and promoting the interconnected nature of chemistry. This experiment utilizes sophomore-level organic synthesis techniques to have students produce their own meso substituted porphyrins. The UV–vis absorption spectrum of the porphyrins is then collected and using the lowest π* ← π transition energy, the size of the conjugated circular π system and the length of a conjugated C–C bond can be calculated using the quantum particle-on-a-ring wave functions and energies. The model slightly overestimates the circumference of the ring and the C–C bond length. Students can then see and rationalize that there are clear molecular orbital considerations and substitution effects that cause these overestimations. With the ability to synthesize multiple substituted porphyrins and potentially insert metal cations, as well, this experiment offers a flexible and engaging way for physical chemistry students to synthesize their own molecules in the service of exploring quantum theory.
doi_str_mv 10.1021/acs.jchemed.4c00017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060419308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060419308</sourcerecordid><originalsourceid>FETCH-LOGICAL-a267t-31f856cebaa203116de75406dc9f8e24e12fa4b3ec94b0dc4c0f7870e339f7913</originalsourceid><addsrcrecordid>eNp9kD1OAzEQhS0EEiFwAhpL1E7s9f54S4j4kyIRASmoLK93nN0osYO9KULFHbghJ8FhQ0s1o5n33mg-hC4ZHTGasLHSYbTUDayhHqWaUsqKIzRgJReE8UQcowGNMlJmIj1FZyEsoyLJSjFAb_PQ2gWeKd-1egXEWaLI837UOTzzULe6wxPlK2e_P7_6Bt84W-Mp2EXXYGfwy852DYT2A2o8c37T7Hxrwzk6MWoV4OJQh2h-d_s6eSDTp_vHyfWUqCQvOsKZEVmuoVIqoZyxvIYiS2le69IISFJgiVFpxUGXaUVrHd8zhSgocF6aomR8iK763I1371sInVy6rbfxpOQ0p2mkQEVU8V6lvQvBg5Eb366V30lG5Z6hjAzlgaE8MIyuce_6Xf7F_uf4AYnHeIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060419308</pqid></control><display><type>article</type><title>Using Particle-on-a-Ring to Predict Carbon–Carbon Bond Length of Synthesized Porphyrins</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Deslauriers, Courtney H. ; Knurr, Benjamin J.</creator><creatorcontrib>Deslauriers, Courtney H. ; Knurr, Benjamin J.</creatorcontrib><description>Experiments that explore quantum principles while utilizing and reinforcing previous synthesis skills are excellent for engaging students and promoting the interconnected nature of chemistry. This experiment utilizes sophomore-level organic synthesis techniques to have students produce their own meso substituted porphyrins. The UV–vis absorption spectrum of the porphyrins is then collected and using the lowest π* ← π transition energy, the size of the conjugated circular π system and the length of a conjugated C–C bond can be calculated using the quantum particle-on-a-ring wave functions and energies. The model slightly overestimates the circumference of the ring and the C–C bond length. Students can then see and rationalize that there are clear molecular orbital considerations and substitution effects that cause these overestimations. With the ability to synthesize multiple substituted porphyrins and potentially insert metal cations, as well, this experiment offers a flexible and engaging way for physical chemistry students to synthesize their own molecules in the service of exploring quantum theory.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/acs.jchemed.4c00017</identifier><language>eng</language><publisher>Easton: American Chemical Society and Division of Chemical Education, Inc</publisher><subject>Absorption spectra ; Carbon ; Cations ; Chemical synthesis ; Chemistry ; Covalent bonds ; Experiments ; Function words ; Learner Engagement ; Molecular orbitals ; Molecules ; Organic Chemistry ; Physical chemistry ; Porphyrins ; Quantum Mechanics ; Quantum theory ; Students ; Substitutes ; Wave functions</subject><ispartof>Journal of chemical education, 2024-05, Vol.101 (5), p.2103-2109</ispartof><rights>2024 American Chemical Society and Division of Chemical Education, Inc.</rights><rights>Copyright American Chemical Society May 14, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a267t-31f856cebaa203116de75406dc9f8e24e12fa4b3ec94b0dc4c0f7870e339f7913</cites><orcidid>0000-0003-1812-8558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Deslauriers, Courtney H.</creatorcontrib><creatorcontrib>Knurr, Benjamin J.</creatorcontrib><title>Using Particle-on-a-Ring to Predict Carbon–Carbon Bond Length of Synthesized Porphyrins</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>Experiments that explore quantum principles while utilizing and reinforcing previous synthesis skills are excellent for engaging students and promoting the interconnected nature of chemistry. This experiment utilizes sophomore-level organic synthesis techniques to have students produce their own meso substituted porphyrins. The UV–vis absorption spectrum of the porphyrins is then collected and using the lowest π* ← π transition energy, the size of the conjugated circular π system and the length of a conjugated C–C bond can be calculated using the quantum particle-on-a-ring wave functions and energies. The model slightly overestimates the circumference of the ring and the C–C bond length. Students can then see and rationalize that there are clear molecular orbital considerations and substitution effects that cause these overestimations. With the ability to synthesize multiple substituted porphyrins and potentially insert metal cations, as well, this experiment offers a flexible and engaging way for physical chemistry students to synthesize their own molecules in the service of exploring quantum theory.</description><subject>Absorption spectra</subject><subject>Carbon</subject><subject>Cations</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Covalent bonds</subject><subject>Experiments</subject><subject>Function words</subject><subject>Learner Engagement</subject><subject>Molecular orbitals</subject><subject>Molecules</subject><subject>Organic Chemistry</subject><subject>Physical chemistry</subject><subject>Porphyrins</subject><subject>Quantum Mechanics</subject><subject>Quantum theory</subject><subject>Students</subject><subject>Substitutes</subject><subject>Wave functions</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEQhS0EEiFwAhpL1E7s9f54S4j4kyIRASmoLK93nN0osYO9KULFHbghJ8FhQ0s1o5n33mg-hC4ZHTGasLHSYbTUDayhHqWaUsqKIzRgJReE8UQcowGNMlJmIj1FZyEsoyLJSjFAb_PQ2gWeKd-1egXEWaLI837UOTzzULe6wxPlK2e_P7_6Bt84W-Mp2EXXYGfwy852DYT2A2o8c37T7Hxrwzk6MWoV4OJQh2h-d_s6eSDTp_vHyfWUqCQvOsKZEVmuoVIqoZyxvIYiS2le69IISFJgiVFpxUGXaUVrHd8zhSgocF6aomR8iK763I1371sInVy6rbfxpOQ0p2mkQEVU8V6lvQvBg5Eb366V30lG5Z6hjAzlgaE8MIyuce_6Xf7F_uf4AYnHeIo</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>Deslauriers, Courtney H.</creator><creator>Knurr, Benjamin J.</creator><general>American Chemical Society and Division of Chemical Education, Inc</general><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-1812-8558</orcidid></search><sort><creationdate>20240514</creationdate><title>Using Particle-on-a-Ring to Predict Carbon–Carbon Bond Length of Synthesized Porphyrins</title><author>Deslauriers, Courtney H. ; Knurr, Benjamin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a267t-31f856cebaa203116de75406dc9f8e24e12fa4b3ec94b0dc4c0f7870e339f7913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Carbon</topic><topic>Cations</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Covalent bonds</topic><topic>Experiments</topic><topic>Function words</topic><topic>Learner Engagement</topic><topic>Molecular orbitals</topic><topic>Molecules</topic><topic>Organic Chemistry</topic><topic>Physical chemistry</topic><topic>Porphyrins</topic><topic>Quantum Mechanics</topic><topic>Quantum theory</topic><topic>Students</topic><topic>Substitutes</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deslauriers, Courtney H.</creatorcontrib><creatorcontrib>Knurr, Benjamin J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deslauriers, Courtney H.</au><au>Knurr, Benjamin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Particle-on-a-Ring to Predict Carbon–Carbon Bond Length of Synthesized Porphyrins</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2024-05-14</date><risdate>2024</risdate><volume>101</volume><issue>5</issue><spage>2103</spage><epage>2109</epage><pages>2103-2109</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><abstract>Experiments that explore quantum principles while utilizing and reinforcing previous synthesis skills are excellent for engaging students and promoting the interconnected nature of chemistry. This experiment utilizes sophomore-level organic synthesis techniques to have students produce their own meso substituted porphyrins. The UV–vis absorption spectrum of the porphyrins is then collected and using the lowest π* ← π transition energy, the size of the conjugated circular π system and the length of a conjugated C–C bond can be calculated using the quantum particle-on-a-ring wave functions and energies. The model slightly overestimates the circumference of the ring and the C–C bond length. Students can then see and rationalize that there are clear molecular orbital considerations and substitution effects that cause these overestimations. With the ability to synthesize multiple substituted porphyrins and potentially insert metal cations, as well, this experiment offers a flexible and engaging way for physical chemistry students to synthesize their own molecules in the service of exploring quantum theory.</abstract><cop>Easton</cop><pub>American Chemical Society and Division of Chemical Education, Inc</pub><doi>10.1021/acs.jchemed.4c00017</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1812-8558</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9584
ispartof Journal of chemical education, 2024-05, Vol.101 (5), p.2103-2109
issn 0021-9584
1938-1328
language eng
recordid cdi_proquest_journals_3060419308
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Absorption spectra
Carbon
Cations
Chemical synthesis
Chemistry
Covalent bonds
Experiments
Function words
Learner Engagement
Molecular orbitals
Molecules
Organic Chemistry
Physical chemistry
Porphyrins
Quantum Mechanics
Quantum theory
Students
Substitutes
Wave functions
title Using Particle-on-a-Ring to Predict Carbon–Carbon Bond Length of Synthesized Porphyrins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Particle-on-a-Ring%20to%20Predict%20Carbon%E2%80%93Carbon%20Bond%20Length%20of%20Synthesized%20Porphyrins&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Deslauriers,%20Courtney%20H.&rft.date=2024-05-14&rft.volume=101&rft.issue=5&rft.spage=2103&rft.epage=2109&rft.pages=2103-2109&rft.issn=0021-9584&rft.eissn=1938-1328&rft_id=info:doi/10.1021/acs.jchemed.4c00017&rft_dat=%3Cproquest_cross%3E3060419308%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a267t-31f856cebaa203116de75406dc9f8e24e12fa4b3ec94b0dc4c0f7870e339f7913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3060419308&rft_id=info:pmid/&rfr_iscdi=true