Loading…
Using Particle-on-a-Ring to Predict Carbon–Carbon Bond Length of Synthesized Porphyrins
Experiments that explore quantum principles while utilizing and reinforcing previous synthesis skills are excellent for engaging students and promoting the interconnected nature of chemistry. This experiment utilizes sophomore-level organic synthesis techniques to have students produce their own mes...
Saved in:
Published in: | Journal of chemical education 2024-05, Vol.101 (5), p.2103-2109 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a267t-31f856cebaa203116de75406dc9f8e24e12fa4b3ec94b0dc4c0f7870e339f7913 |
container_end_page | 2109 |
container_issue | 5 |
container_start_page | 2103 |
container_title | Journal of chemical education |
container_volume | 101 |
creator | Deslauriers, Courtney H. Knurr, Benjamin J. |
description | Experiments that explore quantum principles while utilizing and reinforcing previous synthesis skills are excellent for engaging students and promoting the interconnected nature of chemistry. This experiment utilizes sophomore-level organic synthesis techniques to have students produce their own meso substituted porphyrins. The UV–vis absorption spectrum of the porphyrins is then collected and using the lowest π* ← π transition energy, the size of the conjugated circular π system and the length of a conjugated C–C bond can be calculated using the quantum particle-on-a-ring wave functions and energies. The model slightly overestimates the circumference of the ring and the C–C bond length. Students can then see and rationalize that there are clear molecular orbital considerations and substitution effects that cause these overestimations. With the ability to synthesize multiple substituted porphyrins and potentially insert metal cations, as well, this experiment offers a flexible and engaging way for physical chemistry students to synthesize their own molecules in the service of exploring quantum theory. |
doi_str_mv | 10.1021/acs.jchemed.4c00017 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060419308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060419308</sourcerecordid><originalsourceid>FETCH-LOGICAL-a267t-31f856cebaa203116de75406dc9f8e24e12fa4b3ec94b0dc4c0f7870e339f7913</originalsourceid><addsrcrecordid>eNp9kD1OAzEQhS0EEiFwAhpL1E7s9f54S4j4kyIRASmoLK93nN0osYO9KULFHbghJ8FhQ0s1o5n33mg-hC4ZHTGasLHSYbTUDayhHqWaUsqKIzRgJReE8UQcowGNMlJmIj1FZyEsoyLJSjFAb_PQ2gWeKd-1egXEWaLI837UOTzzULe6wxPlK2e_P7_6Bt84W-Mp2EXXYGfwy852DYT2A2o8c37T7Hxrwzk6MWoV4OJQh2h-d_s6eSDTp_vHyfWUqCQvOsKZEVmuoVIqoZyxvIYiS2le69IISFJgiVFpxUGXaUVrHd8zhSgocF6aomR8iK763I1371sInVy6rbfxpOQ0p2mkQEVU8V6lvQvBg5Eb366V30lG5Z6hjAzlgaE8MIyuce_6Xf7F_uf4AYnHeIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060419308</pqid></control><display><type>article</type><title>Using Particle-on-a-Ring to Predict Carbon–Carbon Bond Length of Synthesized Porphyrins</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Deslauriers, Courtney H. ; Knurr, Benjamin J.</creator><creatorcontrib>Deslauriers, Courtney H. ; Knurr, Benjamin J.</creatorcontrib><description>Experiments that explore quantum principles while utilizing and reinforcing previous synthesis skills are excellent for engaging students and promoting the interconnected nature of chemistry. This experiment utilizes sophomore-level organic synthesis techniques to have students produce their own meso substituted porphyrins. The UV–vis absorption spectrum of the porphyrins is then collected and using the lowest π* ← π transition energy, the size of the conjugated circular π system and the length of a conjugated C–C bond can be calculated using the quantum particle-on-a-ring wave functions and energies. The model slightly overestimates the circumference of the ring and the C–C bond length. Students can then see and rationalize that there are clear molecular orbital considerations and substitution effects that cause these overestimations. With the ability to synthesize multiple substituted porphyrins and potentially insert metal cations, as well, this experiment offers a flexible and engaging way for physical chemistry students to synthesize their own molecules in the service of exploring quantum theory.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/acs.jchemed.4c00017</identifier><language>eng</language><publisher>Easton: American Chemical Society and Division of Chemical Education, Inc</publisher><subject>Absorption spectra ; Carbon ; Cations ; Chemical synthesis ; Chemistry ; Covalent bonds ; Experiments ; Function words ; Learner Engagement ; Molecular orbitals ; Molecules ; Organic Chemistry ; Physical chemistry ; Porphyrins ; Quantum Mechanics ; Quantum theory ; Students ; Substitutes ; Wave functions</subject><ispartof>Journal of chemical education, 2024-05, Vol.101 (5), p.2103-2109</ispartof><rights>2024 American Chemical Society and Division of Chemical Education, Inc.</rights><rights>Copyright American Chemical Society May 14, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a267t-31f856cebaa203116de75406dc9f8e24e12fa4b3ec94b0dc4c0f7870e339f7913</cites><orcidid>0000-0003-1812-8558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Deslauriers, Courtney H.</creatorcontrib><creatorcontrib>Knurr, Benjamin J.</creatorcontrib><title>Using Particle-on-a-Ring to Predict Carbon–Carbon Bond Length of Synthesized Porphyrins</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>Experiments that explore quantum principles while utilizing and reinforcing previous synthesis skills are excellent for engaging students and promoting the interconnected nature of chemistry. This experiment utilizes sophomore-level organic synthesis techniques to have students produce their own meso substituted porphyrins. The UV–vis absorption spectrum of the porphyrins is then collected and using the lowest π* ← π transition energy, the size of the conjugated circular π system and the length of a conjugated C–C bond can be calculated using the quantum particle-on-a-ring wave functions and energies. The model slightly overestimates the circumference of the ring and the C–C bond length. Students can then see and rationalize that there are clear molecular orbital considerations and substitution effects that cause these overestimations. With the ability to synthesize multiple substituted porphyrins and potentially insert metal cations, as well, this experiment offers a flexible and engaging way for physical chemistry students to synthesize their own molecules in the service of exploring quantum theory.</description><subject>Absorption spectra</subject><subject>Carbon</subject><subject>Cations</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Covalent bonds</subject><subject>Experiments</subject><subject>Function words</subject><subject>Learner Engagement</subject><subject>Molecular orbitals</subject><subject>Molecules</subject><subject>Organic Chemistry</subject><subject>Physical chemistry</subject><subject>Porphyrins</subject><subject>Quantum Mechanics</subject><subject>Quantum theory</subject><subject>Students</subject><subject>Substitutes</subject><subject>Wave functions</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEQhS0EEiFwAhpL1E7s9f54S4j4kyIRASmoLK93nN0osYO9KULFHbghJ8FhQ0s1o5n33mg-hC4ZHTGasLHSYbTUDayhHqWaUsqKIzRgJReE8UQcowGNMlJmIj1FZyEsoyLJSjFAb_PQ2gWeKd-1egXEWaLI837UOTzzULe6wxPlK2e_P7_6Bt84W-Mp2EXXYGfwy852DYT2A2o8c37T7Hxrwzk6MWoV4OJQh2h-d_s6eSDTp_vHyfWUqCQvOsKZEVmuoVIqoZyxvIYiS2le69IISFJgiVFpxUGXaUVrHd8zhSgocF6aomR8iK763I1371sInVy6rbfxpOQ0p2mkQEVU8V6lvQvBg5Eb366V30lG5Z6hjAzlgaE8MIyuce_6Xf7F_uf4AYnHeIo</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>Deslauriers, Courtney H.</creator><creator>Knurr, Benjamin J.</creator><general>American Chemical Society and Division of Chemical Education, Inc</general><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-1812-8558</orcidid></search><sort><creationdate>20240514</creationdate><title>Using Particle-on-a-Ring to Predict Carbon–Carbon Bond Length of Synthesized Porphyrins</title><author>Deslauriers, Courtney H. ; Knurr, Benjamin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a267t-31f856cebaa203116de75406dc9f8e24e12fa4b3ec94b0dc4c0f7870e339f7913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Carbon</topic><topic>Cations</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Covalent bonds</topic><topic>Experiments</topic><topic>Function words</topic><topic>Learner Engagement</topic><topic>Molecular orbitals</topic><topic>Molecules</topic><topic>Organic Chemistry</topic><topic>Physical chemistry</topic><topic>Porphyrins</topic><topic>Quantum Mechanics</topic><topic>Quantum theory</topic><topic>Students</topic><topic>Substitutes</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deslauriers, Courtney H.</creatorcontrib><creatorcontrib>Knurr, Benjamin J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deslauriers, Courtney H.</au><au>Knurr, Benjamin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Particle-on-a-Ring to Predict Carbon–Carbon Bond Length of Synthesized Porphyrins</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2024-05-14</date><risdate>2024</risdate><volume>101</volume><issue>5</issue><spage>2103</spage><epage>2109</epage><pages>2103-2109</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><abstract>Experiments that explore quantum principles while utilizing and reinforcing previous synthesis skills are excellent for engaging students and promoting the interconnected nature of chemistry. This experiment utilizes sophomore-level organic synthesis techniques to have students produce their own meso substituted porphyrins. The UV–vis absorption spectrum of the porphyrins is then collected and using the lowest π* ← π transition energy, the size of the conjugated circular π system and the length of a conjugated C–C bond can be calculated using the quantum particle-on-a-ring wave functions and energies. The model slightly overestimates the circumference of the ring and the C–C bond length. Students can then see and rationalize that there are clear molecular orbital considerations and substitution effects that cause these overestimations. With the ability to synthesize multiple substituted porphyrins and potentially insert metal cations, as well, this experiment offers a flexible and engaging way for physical chemistry students to synthesize their own molecules in the service of exploring quantum theory.</abstract><cop>Easton</cop><pub>American Chemical Society and Division of Chemical Education, Inc</pub><doi>10.1021/acs.jchemed.4c00017</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1812-8558</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9584 |
ispartof | Journal of chemical education, 2024-05, Vol.101 (5), p.2103-2109 |
issn | 0021-9584 1938-1328 |
language | eng |
recordid | cdi_proquest_journals_3060419308 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Absorption spectra Carbon Cations Chemical synthesis Chemistry Covalent bonds Experiments Function words Learner Engagement Molecular orbitals Molecules Organic Chemistry Physical chemistry Porphyrins Quantum Mechanics Quantum theory Students Substitutes Wave functions |
title | Using Particle-on-a-Ring to Predict Carbon–Carbon Bond Length of Synthesized Porphyrins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Particle-on-a-Ring%20to%20Predict%20Carbon%E2%80%93Carbon%20Bond%20Length%20of%20Synthesized%20Porphyrins&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Deslauriers,%20Courtney%20H.&rft.date=2024-05-14&rft.volume=101&rft.issue=5&rft.spage=2103&rft.epage=2109&rft.pages=2103-2109&rft.issn=0021-9584&rft.eissn=1938-1328&rft_id=info:doi/10.1021/acs.jchemed.4c00017&rft_dat=%3Cproquest_cross%3E3060419308%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a267t-31f856cebaa203116de75406dc9f8e24e12fa4b3ec94b0dc4c0f7870e339f7913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3060419308&rft_id=info:pmid/&rfr_iscdi=true |