Loading…

On some maximal and minimal sets

A set A of positive integers is called 3-free if it contains no 3-term arithmetic progression. Furthermore, such A is called maximal if it is not properly contained in any other 3-free set. In 2006, by confirming a question posed by Erdős et al., Savchev and Chen proved that there exists a maximal 3...

Full description

Saved in:
Bibliographic Details
Published in:Periodica mathematica Hungarica 2024-06, Vol.88 (2), p.354-358
Main Authors: Fang, Jin-Hui, Cao, Xue-Qin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-81f25ae4c10087c3b9f76b0926faaa83f890b26b622ca79278bb87a90943e6b63
container_end_page 358
container_issue 2
container_start_page 354
container_title Periodica mathematica Hungarica
container_volume 88
creator Fang, Jin-Hui
Cao, Xue-Qin
description A set A of positive integers is called 3-free if it contains no 3-term arithmetic progression. Furthermore, such A is called maximal if it is not properly contained in any other 3-free set. In 2006, by confirming a question posed by Erdős et al., Savchev and Chen proved that there exists a maximal 3-free set { a 1 < a 2 < ⋯ < a n < ⋯ } of positive integers with the property that lim n → ∞ ( a n + 1 - a n ) = ∞ . In this paper, we generalize their result. On the other hand, a set A of nonnegative integers is called an asymptotic basis of order h if every sufficiently large integer can be represented as a sum of h elements of A . Such A is defined as minimal if no proper subset of A has this property. We also extend a result of Jańczak and Schoen about the minimal asymptotic basis.
doi_str_mv 10.1007/s10998-023-00559-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060790390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060790390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-81f25ae4c10087c3b9f76b0926faaa83f890b26b622ca79278bb87a90943e6b63</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMouK7-AU8LnqOTme4mOUpRKxR60XNI1kRaurs12VL998au4E0YmGF435vhMXYt4FYAyLskQGvFAYkD1LXmhxNWiFopjgr1KSsASPCagM7ZRUobgIwRFKxa9VUaOl919nPd2W1l-7eqW_fHOfkxXbKzYLfJX_32kr0-PrzMF3y5enqe3y95ixJGrkTA2vpZm32VbMnpIBsHGptgrVUUlAaHjWsQWys1SuWcklaDnpHPayrZzeS7i8PH3qfRbIZ97PNJQ9CA1EC5SoaTqo1DStEHs4v51fhlBJifJMyUhMlJmGMS5pAhmqCUxf27j3_W_1DfBjxfBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060790390</pqid></control><display><type>article</type><title>On some maximal and minimal sets</title><source>Springer Nature</source><creator>Fang, Jin-Hui ; Cao, Xue-Qin</creator><creatorcontrib>Fang, Jin-Hui ; Cao, Xue-Qin</creatorcontrib><description>A set A of positive integers is called 3-free if it contains no 3-term arithmetic progression. Furthermore, such A is called maximal if it is not properly contained in any other 3-free set. In 2006, by confirming a question posed by Erdős et al., Savchev and Chen proved that there exists a maximal 3-free set { a 1 &lt; a 2 &lt; ⋯ &lt; a n &lt; ⋯ } of positive integers with the property that lim n → ∞ ( a n + 1 - a n ) = ∞ . In this paper, we generalize their result. On the other hand, a set A of nonnegative integers is called an asymptotic basis of order h if every sufficiently large integer can be represented as a sum of h elements of A . Such A is defined as minimal if no proper subset of A has this property. We also extend a result of Jańczak and Schoen about the minimal asymptotic basis.</description><identifier>ISSN: 0031-5303</identifier><identifier>EISSN: 1588-2829</identifier><identifier>DOI: 10.1007/s10998-023-00559-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Asymptotic properties ; Integers ; Mathematics ; Mathematics and Statistics</subject><ispartof>Periodica mathematica Hungarica, 2024-06, Vol.88 (2), p.354-358</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-81f25ae4c10087c3b9f76b0926faaa83f890b26b622ca79278bb87a90943e6b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fang, Jin-Hui</creatorcontrib><creatorcontrib>Cao, Xue-Qin</creatorcontrib><title>On some maximal and minimal sets</title><title>Periodica mathematica Hungarica</title><addtitle>Period Math Hung</addtitle><description>A set A of positive integers is called 3-free if it contains no 3-term arithmetic progression. Furthermore, such A is called maximal if it is not properly contained in any other 3-free set. In 2006, by confirming a question posed by Erdős et al., Savchev and Chen proved that there exists a maximal 3-free set { a 1 &lt; a 2 &lt; ⋯ &lt; a n &lt; ⋯ } of positive integers with the property that lim n → ∞ ( a n + 1 - a n ) = ∞ . In this paper, we generalize their result. On the other hand, a set A of nonnegative integers is called an asymptotic basis of order h if every sufficiently large integer can be represented as a sum of h elements of A . Such A is defined as minimal if no proper subset of A has this property. We also extend a result of Jańczak and Schoen about the minimal asymptotic basis.</description><subject>Asymptotic properties</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0031-5303</issn><issn>1588-2829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMouK7-AU8LnqOTme4mOUpRKxR60XNI1kRaurs12VL998au4E0YmGF435vhMXYt4FYAyLskQGvFAYkD1LXmhxNWiFopjgr1KSsASPCagM7ZRUobgIwRFKxa9VUaOl919nPd2W1l-7eqW_fHOfkxXbKzYLfJX_32kr0-PrzMF3y5enqe3y95ixJGrkTA2vpZm32VbMnpIBsHGptgrVUUlAaHjWsQWys1SuWcklaDnpHPayrZzeS7i8PH3qfRbIZ97PNJQ9CA1EC5SoaTqo1DStEHs4v51fhlBJifJMyUhMlJmGMS5pAhmqCUxf27j3_W_1DfBjxfBw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Fang, Jin-Hui</creator><creator>Cao, Xue-Qin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>On some maximal and minimal sets</title><author>Fang, Jin-Hui ; Cao, Xue-Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-81f25ae4c10087c3b9f76b0926faaa83f890b26b622ca79278bb87a90943e6b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic properties</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Jin-Hui</creatorcontrib><creatorcontrib>Cao, Xue-Qin</creatorcontrib><collection>CrossRef</collection><jtitle>Periodica mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Jin-Hui</au><au>Cao, Xue-Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On some maximal and minimal sets</atitle><jtitle>Periodica mathematica Hungarica</jtitle><stitle>Period Math Hung</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>88</volume><issue>2</issue><spage>354</spage><epage>358</epage><pages>354-358</pages><issn>0031-5303</issn><eissn>1588-2829</eissn><abstract>A set A of positive integers is called 3-free if it contains no 3-term arithmetic progression. Furthermore, such A is called maximal if it is not properly contained in any other 3-free set. In 2006, by confirming a question posed by Erdős et al., Savchev and Chen proved that there exists a maximal 3-free set { a 1 &lt; a 2 &lt; ⋯ &lt; a n &lt; ⋯ } of positive integers with the property that lim n → ∞ ( a n + 1 - a n ) = ∞ . In this paper, we generalize their result. On the other hand, a set A of nonnegative integers is called an asymptotic basis of order h if every sufficiently large integer can be represented as a sum of h elements of A . Such A is defined as minimal if no proper subset of A has this property. We also extend a result of Jańczak and Schoen about the minimal asymptotic basis.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10998-023-00559-w</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-5303
ispartof Periodica mathematica Hungarica, 2024-06, Vol.88 (2), p.354-358
issn 0031-5303
1588-2829
language eng
recordid cdi_proquest_journals_3060790390
source Springer Nature
subjects Asymptotic properties
Integers
Mathematics
Mathematics and Statistics
title On some maximal and minimal sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20some%20maximal%20and%20minimal%20sets&rft.jtitle=Periodica%20mathematica%20Hungarica&rft.au=Fang,%20Jin-Hui&rft.date=2024-06-01&rft.volume=88&rft.issue=2&rft.spage=354&rft.epage=358&rft.pages=354-358&rft.issn=0031-5303&rft.eissn=1588-2829&rft_id=info:doi/10.1007/s10998-023-00559-w&rft_dat=%3Cproquest_cross%3E3060790390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-81f25ae4c10087c3b9f76b0926faaa83f890b26b622ca79278bb87a90943e6b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3060790390&rft_id=info:pmid/&rfr_iscdi=true