Loading…

Chatter detection in simulated machining data: a simple refined approach to vibration data

Vibration monitoring is a critical aspect of assessing the health and performance of machinery and industrial processes. This study explores the application of machine learning techniques, specifically the Random Forest (RF) classification model, to predict and classify chatter—a detrimental self-ex...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2024-06, Vol.132 (9-10), p.4541-4557
Main Authors: Alberts, Matthew, St. John, Sam, Jared, Bradley, Karandikar, Jaydeep, Khojandi, Anahita, Schmitz, Tony, Coble, Jamie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c341t-a9471f7b7fbb1b2dcedf3b48174f9c2a26d20e33af51938918a692bf9ea74fb93
container_end_page 4557
container_issue 9-10
container_start_page 4541
container_title International journal of advanced manufacturing technology
container_volume 132
creator Alberts, Matthew
St. John, Sam
Jared, Bradley
Karandikar, Jaydeep
Khojandi, Anahita
Schmitz, Tony
Coble, Jamie
description Vibration monitoring is a critical aspect of assessing the health and performance of machinery and industrial processes. This study explores the application of machine learning techniques, specifically the Random Forest (RF) classification model, to predict and classify chatter—a detrimental self-excited vibration phenomenon—during machining operations. While sophisticated methods have been employed to address chatter, this research investigates the efficacy of a novel approach to an RF model. The study leverages simulated vibration data, bypassing resource-intensive real-world data collection, to develop a versatile chatter detection model applicable across diverse machining configurations. The feature extraction process combines time-series features and Fast Fourier Transform (FFT) data features, streamlining the model while addressing challenges posed by feature selection. By focusing on the RF model’s simplicity and efficiency, this research advances chatter detection techniques, offering a practical tool with improved generalizability, computational efficiency, and ease of interpretation. The study demonstrates that innovation can reside in simplicity, opening avenues for wider applicability and accelerated progress in the machining industry.
doi_str_mv 10.1007/s00170-024-13590-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060930641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060930641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-a9471f7b7fbb1b2dcedf3b48174f9c2a26d20e33af51938918a692bf9ea74fb93</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgsMRt8dprEbKjin4TEAguLdU7s1lWbBNtFop8et0FiY7kb7vfePT1CLoFfA-fVTeQcKs64KBjImeJsd0QmUEjJJIfZMZlwUdZMVmV9Ss5iXGW8hLKekI_5ElOygbY22Sb5vqO-o9FvtmtMtqUbbJa-892CtpjwluL-NqwtDdb5LgM4DKHPEE09_fIm4MFjD5-TE4fraC9-95S8P9y_zZ_Yy-vj8_zuhTWygMRQFRW4ylTOGDCibWzrpClqqAqnGoGibAW3UqKbgZK1ghpLJYxTFjNhlJySq9E3B_nc2pj0qt-GLr_Ukpdc5VFApsRINaGPMafXQ_AbDN8auN53qMcOde5QHzrUuyySoyhmuFvY8Gf9j-oHHpt1zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060930641</pqid></control><display><type>article</type><title>Chatter detection in simulated machining data: a simple refined approach to vibration data</title><source>Springer Link</source><creator>Alberts, Matthew ; St. John, Sam ; Jared, Bradley ; Karandikar, Jaydeep ; Khojandi, Anahita ; Schmitz, Tony ; Coble, Jamie</creator><creatorcontrib>Alberts, Matthew ; St. John, Sam ; Jared, Bradley ; Karandikar, Jaydeep ; Khojandi, Anahita ; Schmitz, Tony ; Coble, Jamie</creatorcontrib><description>Vibration monitoring is a critical aspect of assessing the health and performance of machinery and industrial processes. This study explores the application of machine learning techniques, specifically the Random Forest (RF) classification model, to predict and classify chatter—a detrimental self-excited vibration phenomenon—during machining operations. While sophisticated methods have been employed to address chatter, this research investigates the efficacy of a novel approach to an RF model. The study leverages simulated vibration data, bypassing resource-intensive real-world data collection, to develop a versatile chatter detection model applicable across diverse machining configurations. The feature extraction process combines time-series features and Fast Fourier Transform (FFT) data features, streamlining the model while addressing challenges posed by feature selection. By focusing on the RF model’s simplicity and efficiency, this research advances chatter detection techniques, offering a practical tool with improved generalizability, computational efficiency, and ease of interpretation. The study demonstrates that innovation can reside in simplicity, opening avenues for wider applicability and accelerated progress in the machining industry.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-13590-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Chatter ; Computer-Aided Engineering (CAD ; Data collection ; Engineering ; Fast Fourier transformations ; Feature extraction ; Fourier series ; Fourier transforms ; Industrial and Production Engineering ; Machine learning ; Machining ; Mechanical Engineering ; Media Management ; Original Article ; Software ; Vibration monitoring</subject><ispartof>International journal of advanced manufacturing technology, 2024-06, Vol.132 (9-10), p.4541-4557</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-a9471f7b7fbb1b2dcedf3b48174f9c2a26d20e33af51938918a692bf9ea74fb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Alberts, Matthew</creatorcontrib><creatorcontrib>St. John, Sam</creatorcontrib><creatorcontrib>Jared, Bradley</creatorcontrib><creatorcontrib>Karandikar, Jaydeep</creatorcontrib><creatorcontrib>Khojandi, Anahita</creatorcontrib><creatorcontrib>Schmitz, Tony</creatorcontrib><creatorcontrib>Coble, Jamie</creatorcontrib><title>Chatter detection in simulated machining data: a simple refined approach to vibration data</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Vibration monitoring is a critical aspect of assessing the health and performance of machinery and industrial processes. This study explores the application of machine learning techniques, specifically the Random Forest (RF) classification model, to predict and classify chatter—a detrimental self-excited vibration phenomenon—during machining operations. While sophisticated methods have been employed to address chatter, this research investigates the efficacy of a novel approach to an RF model. The study leverages simulated vibration data, bypassing resource-intensive real-world data collection, to develop a versatile chatter detection model applicable across diverse machining configurations. The feature extraction process combines time-series features and Fast Fourier Transform (FFT) data features, streamlining the model while addressing challenges posed by feature selection. By focusing on the RF model’s simplicity and efficiency, this research advances chatter detection techniques, offering a practical tool with improved generalizability, computational efficiency, and ease of interpretation. The study demonstrates that innovation can reside in simplicity, opening avenues for wider applicability and accelerated progress in the machining industry.</description><subject>CAE) and Design</subject><subject>Chatter</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Data collection</subject><subject>Engineering</subject><subject>Fast Fourier transformations</subject><subject>Feature extraction</subject><subject>Fourier series</subject><subject>Fourier transforms</subject><subject>Industrial and Production Engineering</subject><subject>Machine learning</subject><subject>Machining</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Software</subject><subject>Vibration monitoring</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwBZgsMRt8dprEbKjin4TEAguLdU7s1lWbBNtFop8et0FiY7kb7vfePT1CLoFfA-fVTeQcKs64KBjImeJsd0QmUEjJJIfZMZlwUdZMVmV9Ss5iXGW8hLKekI_5ElOygbY22Sb5vqO-o9FvtmtMtqUbbJa-892CtpjwluL-NqwtDdb5LgM4DKHPEE09_fIm4MFjD5-TE4fraC9-95S8P9y_zZ_Yy-vj8_zuhTWygMRQFRW4ylTOGDCibWzrpClqqAqnGoGibAW3UqKbgZK1ghpLJYxTFjNhlJySq9E3B_nc2pj0qt-GLr_Ukpdc5VFApsRINaGPMafXQ_AbDN8auN53qMcOde5QHzrUuyySoyhmuFvY8Gf9j-oHHpt1zA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Alberts, Matthew</creator><creator>St. John, Sam</creator><creator>Jared, Bradley</creator><creator>Karandikar, Jaydeep</creator><creator>Khojandi, Anahita</creator><creator>Schmitz, Tony</creator><creator>Coble, Jamie</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Chatter detection in simulated machining data: a simple refined approach to vibration data</title><author>Alberts, Matthew ; St. John, Sam ; Jared, Bradley ; Karandikar, Jaydeep ; Khojandi, Anahita ; Schmitz, Tony ; Coble, Jamie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-a9471f7b7fbb1b2dcedf3b48174f9c2a26d20e33af51938918a692bf9ea74fb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CAE) and Design</topic><topic>Chatter</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Data collection</topic><topic>Engineering</topic><topic>Fast Fourier transformations</topic><topic>Feature extraction</topic><topic>Fourier series</topic><topic>Fourier transforms</topic><topic>Industrial and Production Engineering</topic><topic>Machine learning</topic><topic>Machining</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Software</topic><topic>Vibration monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alberts, Matthew</creatorcontrib><creatorcontrib>St. John, Sam</creatorcontrib><creatorcontrib>Jared, Bradley</creatorcontrib><creatorcontrib>Karandikar, Jaydeep</creatorcontrib><creatorcontrib>Khojandi, Anahita</creatorcontrib><creatorcontrib>Schmitz, Tony</creatorcontrib><creatorcontrib>Coble, Jamie</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alberts, Matthew</au><au>St. John, Sam</au><au>Jared, Bradley</au><au>Karandikar, Jaydeep</au><au>Khojandi, Anahita</au><au>Schmitz, Tony</au><au>Coble, Jamie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chatter detection in simulated machining data: a simple refined approach to vibration data</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>132</volume><issue>9-10</issue><spage>4541</spage><epage>4557</epage><pages>4541-4557</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Vibration monitoring is a critical aspect of assessing the health and performance of machinery and industrial processes. This study explores the application of machine learning techniques, specifically the Random Forest (RF) classification model, to predict and classify chatter—a detrimental self-excited vibration phenomenon—during machining operations. While sophisticated methods have been employed to address chatter, this research investigates the efficacy of a novel approach to an RF model. The study leverages simulated vibration data, bypassing resource-intensive real-world data collection, to develop a versatile chatter detection model applicable across diverse machining configurations. The feature extraction process combines time-series features and Fast Fourier Transform (FFT) data features, streamlining the model while addressing challenges posed by feature selection. By focusing on the RF model’s simplicity and efficiency, this research advances chatter detection techniques, offering a practical tool with improved generalizability, computational efficiency, and ease of interpretation. The study demonstrates that innovation can reside in simplicity, opening avenues for wider applicability and accelerated progress in the machining industry.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-13590-z</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2024-06, Vol.132 (9-10), p.4541-4557
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_3060930641
source Springer Link
subjects CAE) and Design
Chatter
Computer-Aided Engineering (CAD
Data collection
Engineering
Fast Fourier transformations
Feature extraction
Fourier series
Fourier transforms
Industrial and Production Engineering
Machine learning
Machining
Mechanical Engineering
Media Management
Original Article
Software
Vibration monitoring
title Chatter detection in simulated machining data: a simple refined approach to vibration data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A44%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chatter%20detection%20in%20simulated%20machining%20data:%20a%20simple%20refined%20approach%20to%20vibration%20data&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Alberts,%20Matthew&rft.date=2024-06-01&rft.volume=132&rft.issue=9-10&rft.spage=4541&rft.epage=4557&rft.pages=4541-4557&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-13590-z&rft_dat=%3Cproquest_cross%3E3060930641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-a9471f7b7fbb1b2dcedf3b48174f9c2a26d20e33af51938918a692bf9ea74fb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3060930641&rft_id=info:pmid/&rfr_iscdi=true