Loading…
Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces
Ion (de)solvation at solid–electrolyte interfaces is pivotal for energy and chemical conversion technology, such as (electro)catalysis, batteries and bipolar membranes. For example, during the electrocatalytic hydrogen evolution reaction in alkaline media, water needs to be dissociated and hydroxide...
Saved in:
Published in: | Nature energy 2024-05, Vol.9 (5), p.548-558 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3 |
container_end_page | 558 |
container_issue | 5 |
container_start_page | 548 |
container_title | Nature energy |
container_volume | 9 |
creator | Rodellar, Carlos G. Gisbert-Gonzalez, José M. Sarabia, Francisco Roldan Cuenya, Beatriz Oener, Sebastian Z. |
description | Ion (de)solvation at solid–electrolyte interfaces is pivotal for energy and chemical conversion technology, such as (electro)catalysis, batteries and bipolar membranes. For example, during the electrocatalytic hydrogen evolution reaction in alkaline media, water needs to be dissociated and hydroxide ions solvated—a process that is not well understood. Here we study water dissociation and ion solvation kinetics in isolation at polymeric bipolar membrane and electrolyte–metal interfaces. We discover bias-dependent relationships between the activation entropy and enthalpy, which we link to a bias-dependent dispersion of interfacial capacitance. Furthermore, our results indicate that OH
−
solvation is kinetically slower than H
+
solvation and that the solvation kinetics display characteristics that are independent of the catalyst structure. We attribute this to a universal amount of excess charge needed to induce electric fields that alter the interfacial entropy of water. Of fundamental interest, these results are critical to enable knowledge-driven bipolar membrane and electrocatalyst design.
Ion solvation at solid–electrolyte interfaces is crucial in various components of energy conversion technologies, including water splitting electrocatalysts and bipolar membranes, but is poorly understood. Here the authors study ion solvation kinetics in these systems, highlighting the key role of interfacial capacitance in determining behaviour. |
doi_str_mv | 10.1038/s41560-024-01484-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060941320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060941320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOIzzAq4Krqs3SZumSxn8GRgQQdchTW-kY_9MMsLMynfwDX0SoxV05eqcxXfOvRxCTimcU-Dywmc0F5ACy1KgmczS_QGZMchlWuSZOPzjj8nC-w0AsJKxXNIZuV8NfeKH9lWHJrrnpsfQGJ80fVI149Bql3TYVU736BPd14kOCbZoghvaXcCPt_cOg24jH9BZbdCfkCOrW4-LH52Tx-urh-Vtur67WS0v16nhgoeUM1FnhSi4rpHGj9BGKYUsjWWWgdGmqgQIaWhlq7wGLMuI6KIuLEiJNZ-Ts6l3dMPLFn1Qm2Hr-nhScRBQZpQziBSbKOMG7x1aNbqm026nKKiv9dS0norrqe_11D6G-BTyEe6f0P1W_5P6BC13dS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060941320</pqid></control><display><type>article</type><title>Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces</title><source>Alma/SFX Local Collection</source><creator>Rodellar, Carlos G. ; Gisbert-Gonzalez, José M. ; Sarabia, Francisco ; Roldan Cuenya, Beatriz ; Oener, Sebastian Z.</creator><creatorcontrib>Rodellar, Carlos G. ; Gisbert-Gonzalez, José M. ; Sarabia, Francisco ; Roldan Cuenya, Beatriz ; Oener, Sebastian Z.</creatorcontrib><description>Ion (de)solvation at solid–electrolyte interfaces is pivotal for energy and chemical conversion technology, such as (electro)catalysis, batteries and bipolar membranes. For example, during the electrocatalytic hydrogen evolution reaction in alkaline media, water needs to be dissociated and hydroxide ions solvated—a process that is not well understood. Here we study water dissociation and ion solvation kinetics in isolation at polymeric bipolar membrane and electrolyte–metal interfaces. We discover bias-dependent relationships between the activation entropy and enthalpy, which we link to a bias-dependent dispersion of interfacial capacitance. Furthermore, our results indicate that OH
−
solvation is kinetically slower than H
+
solvation and that the solvation kinetics display characteristics that are independent of the catalyst structure. We attribute this to a universal amount of excess charge needed to induce electric fields that alter the interfacial entropy of water. Of fundamental interest, these results are critical to enable knowledge-driven bipolar membrane and electrocatalyst design.
Ion solvation at solid–electrolyte interfaces is crucial in various components of energy conversion technologies, including water splitting electrocatalysts and bipolar membranes, but is poorly understood. Here the authors study ion solvation kinetics in these systems, highlighting the key role of interfacial capacitance in determining behaviour.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-024-01484-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/4077/909/4086 ; 639/638/161/886 ; 639/638/77/885 ; Activation energy ; Bias ; Capacitance ; Catalysis ; Catalysts ; Economics and Management ; Electric fields ; Electrocatalysts ; Electrolytes ; Energy ; Energy conversion ; Energy Policy ; Energy Storage ; Energy Systems ; Enthalpy ; Entropy ; Entropy of activation ; Hydrogen evolution reactions ; Interfaces ; Kinetics ; Membranes ; Renewable and Green Energy ; Solvation ; Water demand ; Water splitting</subject><ispartof>Nature energy, 2024-05, Vol.9 (5), p.548-558</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3</citedby><cites>FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3</cites><orcidid>0009-0006-6482-1053 ; 0000-0003-0770-4089 ; 0000-0002-8025-307X ; 0000-0003-3612-4059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rodellar, Carlos G.</creatorcontrib><creatorcontrib>Gisbert-Gonzalez, José M.</creatorcontrib><creatorcontrib>Sarabia, Francisco</creatorcontrib><creatorcontrib>Roldan Cuenya, Beatriz</creatorcontrib><creatorcontrib>Oener, Sebastian Z.</creatorcontrib><title>Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>Ion (de)solvation at solid–electrolyte interfaces is pivotal for energy and chemical conversion technology, such as (electro)catalysis, batteries and bipolar membranes. For example, during the electrocatalytic hydrogen evolution reaction in alkaline media, water needs to be dissociated and hydroxide ions solvated—a process that is not well understood. Here we study water dissociation and ion solvation kinetics in isolation at polymeric bipolar membrane and electrolyte–metal interfaces. We discover bias-dependent relationships between the activation entropy and enthalpy, which we link to a bias-dependent dispersion of interfacial capacitance. Furthermore, our results indicate that OH
−
solvation is kinetically slower than H
+
solvation and that the solvation kinetics display characteristics that are independent of the catalyst structure. We attribute this to a universal amount of excess charge needed to induce electric fields that alter the interfacial entropy of water. Of fundamental interest, these results are critical to enable knowledge-driven bipolar membrane and electrocatalyst design.
Ion solvation at solid–electrolyte interfaces is crucial in various components of energy conversion technologies, including water splitting electrocatalysts and bipolar membranes, but is poorly understood. Here the authors study ion solvation kinetics in these systems, highlighting the key role of interfacial capacitance in determining behaviour.</description><subject>639/4077/909/4086</subject><subject>639/638/161/886</subject><subject>639/638/77/885</subject><subject>Activation energy</subject><subject>Bias</subject><subject>Capacitance</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Economics and Management</subject><subject>Electric fields</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Entropy of activation</subject><subject>Hydrogen evolution reactions</subject><subject>Interfaces</subject><subject>Kinetics</subject><subject>Membranes</subject><subject>Renewable and Green Energy</subject><subject>Solvation</subject><subject>Water demand</subject><subject>Water splitting</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOIzzAq4Krqs3SZumSxn8GRgQQdchTW-kY_9MMsLMynfwDX0SoxV05eqcxXfOvRxCTimcU-Dywmc0F5ACy1KgmczS_QGZMchlWuSZOPzjj8nC-w0AsJKxXNIZuV8NfeKH9lWHJrrnpsfQGJ80fVI149Bql3TYVU736BPd14kOCbZoghvaXcCPt_cOg24jH9BZbdCfkCOrW4-LH52Tx-urh-Vtur67WS0v16nhgoeUM1FnhSi4rpHGj9BGKYUsjWWWgdGmqgQIaWhlq7wGLMuI6KIuLEiJNZ-Ts6l3dMPLFn1Qm2Hr-nhScRBQZpQziBSbKOMG7x1aNbqm026nKKiv9dS0norrqe_11D6G-BTyEe6f0P1W_5P6BC13dS0</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Rodellar, Carlos G.</creator><creator>Gisbert-Gonzalez, José M.</creator><creator>Sarabia, Francisco</creator><creator>Roldan Cuenya, Beatriz</creator><creator>Oener, Sebastian Z.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0006-6482-1053</orcidid><orcidid>https://orcid.org/0000-0003-0770-4089</orcidid><orcidid>https://orcid.org/0000-0002-8025-307X</orcidid><orcidid>https://orcid.org/0000-0003-3612-4059</orcidid></search><sort><creationdate>20240501</creationdate><title>Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces</title><author>Rodellar, Carlos G. ; Gisbert-Gonzalez, José M. ; Sarabia, Francisco ; Roldan Cuenya, Beatriz ; Oener, Sebastian Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/4077/909/4086</topic><topic>639/638/161/886</topic><topic>639/638/77/885</topic><topic>Activation energy</topic><topic>Bias</topic><topic>Capacitance</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Economics and Management</topic><topic>Electric fields</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Entropy of activation</topic><topic>Hydrogen evolution reactions</topic><topic>Interfaces</topic><topic>Kinetics</topic><topic>Membranes</topic><topic>Renewable and Green Energy</topic><topic>Solvation</topic><topic>Water demand</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodellar, Carlos G.</creatorcontrib><creatorcontrib>Gisbert-Gonzalez, José M.</creatorcontrib><creatorcontrib>Sarabia, Francisco</creatorcontrib><creatorcontrib>Roldan Cuenya, Beatriz</creatorcontrib><creatorcontrib>Oener, Sebastian Z.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodellar, Carlos G.</au><au>Gisbert-Gonzalez, José M.</au><au>Sarabia, Francisco</au><au>Roldan Cuenya, Beatriz</au><au>Oener, Sebastian Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>9</volume><issue>5</issue><spage>548</spage><epage>558</epage><pages>548-558</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>Ion (de)solvation at solid–electrolyte interfaces is pivotal for energy and chemical conversion technology, such as (electro)catalysis, batteries and bipolar membranes. For example, during the electrocatalytic hydrogen evolution reaction in alkaline media, water needs to be dissociated and hydroxide ions solvated—a process that is not well understood. Here we study water dissociation and ion solvation kinetics in isolation at polymeric bipolar membrane and electrolyte–metal interfaces. We discover bias-dependent relationships between the activation entropy and enthalpy, which we link to a bias-dependent dispersion of interfacial capacitance. Furthermore, our results indicate that OH
−
solvation is kinetically slower than H
+
solvation and that the solvation kinetics display characteristics that are independent of the catalyst structure. We attribute this to a universal amount of excess charge needed to induce electric fields that alter the interfacial entropy of water. Of fundamental interest, these results are critical to enable knowledge-driven bipolar membrane and electrocatalyst design.
Ion solvation at solid–electrolyte interfaces is crucial in various components of energy conversion technologies, including water splitting electrocatalysts and bipolar membranes, but is poorly understood. Here the authors study ion solvation kinetics in these systems, highlighting the key role of interfacial capacitance in determining behaviour.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-024-01484-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0006-6482-1053</orcidid><orcidid>https://orcid.org/0000-0003-0770-4089</orcidid><orcidid>https://orcid.org/0000-0002-8025-307X</orcidid><orcidid>https://orcid.org/0000-0003-3612-4059</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-7546 |
ispartof | Nature energy, 2024-05, Vol.9 (5), p.548-558 |
issn | 2058-7546 2058-7546 |
language | eng |
recordid | cdi_proquest_journals_3060941320 |
source | Alma/SFX Local Collection |
subjects | 639/4077/909/4086 639/638/161/886 639/638/77/885 Activation energy Bias Capacitance Catalysis Catalysts Economics and Management Electric fields Electrocatalysts Electrolytes Energy Energy conversion Energy Policy Energy Storage Energy Systems Enthalpy Entropy Entropy of activation Hydrogen evolution reactions Interfaces Kinetics Membranes Renewable and Green Energy Solvation Water demand Water splitting |
title | Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20solvation%20kinetics%20in%20bipolar%20membranes%20and%20at%20electrolyte%E2%80%93metal%20interfaces&rft.jtitle=Nature%20energy&rft.au=Rodellar,%20Carlos%20G.&rft.date=2024-05-01&rft.volume=9&rft.issue=5&rft.spage=548&rft.epage=558&rft.pages=548-558&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-024-01484-z&rft_dat=%3Cproquest_cross%3E3060941320%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3060941320&rft_id=info:pmid/&rfr_iscdi=true |