Loading…

Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces

Ion (de)solvation at solid–electrolyte interfaces is pivotal for energy and chemical conversion technology, such as (electro)catalysis, batteries and bipolar membranes. For example, during the electrocatalytic hydrogen evolution reaction in alkaline media, water needs to be dissociated and hydroxide...

Full description

Saved in:
Bibliographic Details
Published in:Nature energy 2024-05, Vol.9 (5), p.548-558
Main Authors: Rodellar, Carlos G., Gisbert-Gonzalez, José M., Sarabia, Francisco, Roldan Cuenya, Beatriz, Oener, Sebastian Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3
cites cdi_FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3
container_end_page 558
container_issue 5
container_start_page 548
container_title Nature energy
container_volume 9
creator Rodellar, Carlos G.
Gisbert-Gonzalez, José M.
Sarabia, Francisco
Roldan Cuenya, Beatriz
Oener, Sebastian Z.
description Ion (de)solvation at solid–electrolyte interfaces is pivotal for energy and chemical conversion technology, such as (electro)catalysis, batteries and bipolar membranes. For example, during the electrocatalytic hydrogen evolution reaction in alkaline media, water needs to be dissociated and hydroxide ions solvated—a process that is not well understood. Here we study water dissociation and ion solvation kinetics in isolation at polymeric bipolar membrane and electrolyte–metal interfaces. We discover bias-dependent relationships between the activation entropy and enthalpy, which we link to a bias-dependent dispersion of interfacial capacitance. Furthermore, our results indicate that OH − solvation is kinetically slower than H + solvation and that the solvation kinetics display characteristics that are independent of the catalyst structure. We attribute this to a universal amount of excess charge needed to induce electric fields that alter the interfacial entropy of water. Of fundamental interest, these results are critical to enable knowledge-driven bipolar membrane and electrocatalyst design. Ion solvation at solid–electrolyte interfaces is crucial in various components of energy conversion technologies, including water splitting electrocatalysts and bipolar membranes, but is poorly understood. Here the authors study ion solvation kinetics in these systems, highlighting the key role of interfacial capacitance in determining behaviour.
doi_str_mv 10.1038/s41560-024-01484-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060941320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060941320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOIzzAq4Krqs3SZumSxn8GRgQQdchTW-kY_9MMsLMynfwDX0SoxV05eqcxXfOvRxCTimcU-Dywmc0F5ACy1KgmczS_QGZMchlWuSZOPzjj8nC-w0AsJKxXNIZuV8NfeKH9lWHJrrnpsfQGJ80fVI149Bql3TYVU736BPd14kOCbZoghvaXcCPt_cOg24jH9BZbdCfkCOrW4-LH52Tx-urh-Vtur67WS0v16nhgoeUM1FnhSi4rpHGj9BGKYUsjWWWgdGmqgQIaWhlq7wGLMuI6KIuLEiJNZ-Ts6l3dMPLFn1Qm2Hr-nhScRBQZpQziBSbKOMG7x1aNbqm026nKKiv9dS0norrqe_11D6G-BTyEe6f0P1W_5P6BC13dS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060941320</pqid></control><display><type>article</type><title>Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces</title><source>Alma/SFX Local Collection</source><creator>Rodellar, Carlos G. ; Gisbert-Gonzalez, José M. ; Sarabia, Francisco ; Roldan Cuenya, Beatriz ; Oener, Sebastian Z.</creator><creatorcontrib>Rodellar, Carlos G. ; Gisbert-Gonzalez, José M. ; Sarabia, Francisco ; Roldan Cuenya, Beatriz ; Oener, Sebastian Z.</creatorcontrib><description>Ion (de)solvation at solid–electrolyte interfaces is pivotal for energy and chemical conversion technology, such as (electro)catalysis, batteries and bipolar membranes. For example, during the electrocatalytic hydrogen evolution reaction in alkaline media, water needs to be dissociated and hydroxide ions solvated—a process that is not well understood. Here we study water dissociation and ion solvation kinetics in isolation at polymeric bipolar membrane and electrolyte–metal interfaces. We discover bias-dependent relationships between the activation entropy and enthalpy, which we link to a bias-dependent dispersion of interfacial capacitance. Furthermore, our results indicate that OH − solvation is kinetically slower than H + solvation and that the solvation kinetics display characteristics that are independent of the catalyst structure. We attribute this to a universal amount of excess charge needed to induce electric fields that alter the interfacial entropy of water. Of fundamental interest, these results are critical to enable knowledge-driven bipolar membrane and electrocatalyst design. Ion solvation at solid–electrolyte interfaces is crucial in various components of energy conversion technologies, including water splitting electrocatalysts and bipolar membranes, but is poorly understood. Here the authors study ion solvation kinetics in these systems, highlighting the key role of interfacial capacitance in determining behaviour.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-024-01484-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/4077/909/4086 ; 639/638/161/886 ; 639/638/77/885 ; Activation energy ; Bias ; Capacitance ; Catalysis ; Catalysts ; Economics and Management ; Electric fields ; Electrocatalysts ; Electrolytes ; Energy ; Energy conversion ; Energy Policy ; Energy Storage ; Energy Systems ; Enthalpy ; Entropy ; Entropy of activation ; Hydrogen evolution reactions ; Interfaces ; Kinetics ; Membranes ; Renewable and Green Energy ; Solvation ; Water demand ; Water splitting</subject><ispartof>Nature energy, 2024-05, Vol.9 (5), p.548-558</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3</citedby><cites>FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3</cites><orcidid>0009-0006-6482-1053 ; 0000-0003-0770-4089 ; 0000-0002-8025-307X ; 0000-0003-3612-4059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rodellar, Carlos G.</creatorcontrib><creatorcontrib>Gisbert-Gonzalez, José M.</creatorcontrib><creatorcontrib>Sarabia, Francisco</creatorcontrib><creatorcontrib>Roldan Cuenya, Beatriz</creatorcontrib><creatorcontrib>Oener, Sebastian Z.</creatorcontrib><title>Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>Ion (de)solvation at solid–electrolyte interfaces is pivotal for energy and chemical conversion technology, such as (electro)catalysis, batteries and bipolar membranes. For example, during the electrocatalytic hydrogen evolution reaction in alkaline media, water needs to be dissociated and hydroxide ions solvated—a process that is not well understood. Here we study water dissociation and ion solvation kinetics in isolation at polymeric bipolar membrane and electrolyte–metal interfaces. We discover bias-dependent relationships between the activation entropy and enthalpy, which we link to a bias-dependent dispersion of interfacial capacitance. Furthermore, our results indicate that OH − solvation is kinetically slower than H + solvation and that the solvation kinetics display characteristics that are independent of the catalyst structure. We attribute this to a universal amount of excess charge needed to induce electric fields that alter the interfacial entropy of water. Of fundamental interest, these results are critical to enable knowledge-driven bipolar membrane and electrocatalyst design. Ion solvation at solid–electrolyte interfaces is crucial in various components of energy conversion technologies, including water splitting electrocatalysts and bipolar membranes, but is poorly understood. Here the authors study ion solvation kinetics in these systems, highlighting the key role of interfacial capacitance in determining behaviour.</description><subject>639/4077/909/4086</subject><subject>639/638/161/886</subject><subject>639/638/77/885</subject><subject>Activation energy</subject><subject>Bias</subject><subject>Capacitance</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Economics and Management</subject><subject>Electric fields</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Entropy of activation</subject><subject>Hydrogen evolution reactions</subject><subject>Interfaces</subject><subject>Kinetics</subject><subject>Membranes</subject><subject>Renewable and Green Energy</subject><subject>Solvation</subject><subject>Water demand</subject><subject>Water splitting</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOIzzAq4Krqs3SZumSxn8GRgQQdchTW-kY_9MMsLMynfwDX0SoxV05eqcxXfOvRxCTimcU-Dywmc0F5ACy1KgmczS_QGZMchlWuSZOPzjj8nC-w0AsJKxXNIZuV8NfeKH9lWHJrrnpsfQGJ80fVI149Bql3TYVU736BPd14kOCbZoghvaXcCPt_cOg24jH9BZbdCfkCOrW4-LH52Tx-urh-Vtur67WS0v16nhgoeUM1FnhSi4rpHGj9BGKYUsjWWWgdGmqgQIaWhlq7wGLMuI6KIuLEiJNZ-Ts6l3dMPLFn1Qm2Hr-nhScRBQZpQziBSbKOMG7x1aNbqm026nKKiv9dS0norrqe_11D6G-BTyEe6f0P1W_5P6BC13dS0</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Rodellar, Carlos G.</creator><creator>Gisbert-Gonzalez, José M.</creator><creator>Sarabia, Francisco</creator><creator>Roldan Cuenya, Beatriz</creator><creator>Oener, Sebastian Z.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0006-6482-1053</orcidid><orcidid>https://orcid.org/0000-0003-0770-4089</orcidid><orcidid>https://orcid.org/0000-0002-8025-307X</orcidid><orcidid>https://orcid.org/0000-0003-3612-4059</orcidid></search><sort><creationdate>20240501</creationdate><title>Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces</title><author>Rodellar, Carlos G. ; Gisbert-Gonzalez, José M. ; Sarabia, Francisco ; Roldan Cuenya, Beatriz ; Oener, Sebastian Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/4077/909/4086</topic><topic>639/638/161/886</topic><topic>639/638/77/885</topic><topic>Activation energy</topic><topic>Bias</topic><topic>Capacitance</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Economics and Management</topic><topic>Electric fields</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Entropy of activation</topic><topic>Hydrogen evolution reactions</topic><topic>Interfaces</topic><topic>Kinetics</topic><topic>Membranes</topic><topic>Renewable and Green Energy</topic><topic>Solvation</topic><topic>Water demand</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodellar, Carlos G.</creatorcontrib><creatorcontrib>Gisbert-Gonzalez, José M.</creatorcontrib><creatorcontrib>Sarabia, Francisco</creatorcontrib><creatorcontrib>Roldan Cuenya, Beatriz</creatorcontrib><creatorcontrib>Oener, Sebastian Z.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodellar, Carlos G.</au><au>Gisbert-Gonzalez, José M.</au><au>Sarabia, Francisco</au><au>Roldan Cuenya, Beatriz</au><au>Oener, Sebastian Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>9</volume><issue>5</issue><spage>548</spage><epage>558</epage><pages>548-558</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>Ion (de)solvation at solid–electrolyte interfaces is pivotal for energy and chemical conversion technology, such as (electro)catalysis, batteries and bipolar membranes. For example, during the electrocatalytic hydrogen evolution reaction in alkaline media, water needs to be dissociated and hydroxide ions solvated—a process that is not well understood. Here we study water dissociation and ion solvation kinetics in isolation at polymeric bipolar membrane and electrolyte–metal interfaces. We discover bias-dependent relationships between the activation entropy and enthalpy, which we link to a bias-dependent dispersion of interfacial capacitance. Furthermore, our results indicate that OH − solvation is kinetically slower than H + solvation and that the solvation kinetics display characteristics that are independent of the catalyst structure. We attribute this to a universal amount of excess charge needed to induce electric fields that alter the interfacial entropy of water. Of fundamental interest, these results are critical to enable knowledge-driven bipolar membrane and electrocatalyst design. Ion solvation at solid–electrolyte interfaces is crucial in various components of energy conversion technologies, including water splitting electrocatalysts and bipolar membranes, but is poorly understood. Here the authors study ion solvation kinetics in these systems, highlighting the key role of interfacial capacitance in determining behaviour.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-024-01484-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0006-6482-1053</orcidid><orcidid>https://orcid.org/0000-0003-0770-4089</orcidid><orcidid>https://orcid.org/0000-0002-8025-307X</orcidid><orcidid>https://orcid.org/0000-0003-3612-4059</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-7546
ispartof Nature energy, 2024-05, Vol.9 (5), p.548-558
issn 2058-7546
2058-7546
language eng
recordid cdi_proquest_journals_3060941320
source Alma/SFX Local Collection
subjects 639/4077/909/4086
639/638/161/886
639/638/77/885
Activation energy
Bias
Capacitance
Catalysis
Catalysts
Economics and Management
Electric fields
Electrocatalysts
Electrolytes
Energy
Energy conversion
Energy Policy
Energy Storage
Energy Systems
Enthalpy
Entropy
Entropy of activation
Hydrogen evolution reactions
Interfaces
Kinetics
Membranes
Renewable and Green Energy
Solvation
Water demand
Water splitting
title Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20solvation%20kinetics%20in%20bipolar%20membranes%20and%20at%20electrolyte%E2%80%93metal%20interfaces&rft.jtitle=Nature%20energy&rft.au=Rodellar,%20Carlos%20G.&rft.date=2024-05-01&rft.volume=9&rft.issue=5&rft.spage=548&rft.epage=558&rft.pages=548-558&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-024-01484-z&rft_dat=%3Cproquest_cross%3E3060941320%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-326d47673ade1000efe109689cf2f20cacbb6068c1bfb5d0e99efea7d7f088ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3060941320&rft_id=info:pmid/&rfr_iscdi=true