Loading…

Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA)

Agriculture is always needed by every human and responsible for the economic growth of a country. Developed countries likewise America, Japan, China are leading and making other countries too dependent on their technologies. But developing countries like India are expecting a lot of new technologica...

Full description

Saved in:
Bibliographic Details
Published in:Current Agriculture Research Journal 2023-09, Vol.11 (2), p.686-694
Main Authors: Sutha, K., Indumathi, N., Uma Shankari, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1050-7ec9537fd1cf2bfa4c6ae822c1dd08789c78a0ad8ec832a7cdf540fd76646bd83
container_end_page 694
container_issue 2
container_start_page 686
container_title Current Agriculture Research Journal
container_volume 11
creator Sutha, K.
Indumathi, N.
Uma Shankari, S.
description Agriculture is always needed by every human and responsible for the economic growth of a country. Developed countries likewise America, Japan, China are leading and making other countries too dependent on their technologies. But developing countries like India are expecting a lot of new technological innovations in the field of agriculture. Innovations may be in the form of smart machines, automation systems, sensor-based instruments, etc. and an advantage for society. In this paper, we have proposed Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA). The proposed algorithm namely SMLA is compared with other traditional algorithms to predict crop yield. In comparison to other algorithms the proposed algorithm works efficiently and produces 95% accuracy.
doi_str_mv 10.12944/CARJ.11.2.30
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062325808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062325808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1050-7ec9537fd1cf2bfa4c6ae822c1dd08789c78a0ad8ec832a7cdf540fd76646bd83</originalsourceid><addsrcrecordid>eNotkL1PwzAQxS0EElXpyG6JBYYEf8V2xiiCAkoFasvAZLn-aFM1SbHTgf-ehDLd3dO7e7ofALcYpZjkjD2WxfItxTglKUUXYEIowUmeC3w59kwkjEt5DWYx7hFCJOeMEDEB66UzXdO41tbtFurWwo_gbG36cSxDd4RftTtYeIqjsGp06OFCm13dOlg5HdpRLg7bLtT9roH3q0VVPNyAK68P0c3-6xR8Pj-ty5ekep-_lkWVGIwylAhn8owKb7HxZOM1M1w7SYjB1iIpZG6E1Ehb6YykRAtjfcaQt4JzxjdW0im4O989hu775GKv9t0ptEOkoogPBDKJRldydpnQxRicV8dQD4_8KIzUHzs1slMYKzLs0V-KwGCn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062325808</pqid></control><display><type>article</type><title>Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA)</title><source>Access via ProQuest (Open Access)</source><creator>Sutha, K. ; Indumathi, N. ; Uma Shankari, S.</creator><creatorcontrib>Sutha, K. ; Indumathi, N. ; Uma Shankari, S.</creatorcontrib><description>Agriculture is always needed by every human and responsible for the economic growth of a country. Developed countries likewise America, Japan, China are leading and making other countries too dependent on their technologies. But developing countries like India are expecting a lot of new technological innovations in the field of agriculture. Innovations may be in the form of smart machines, automation systems, sensor-based instruments, etc. and an advantage for society. In this paper, we have proposed Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA). The proposed algorithm namely SMLA is compared with other traditional algorithms to predict crop yield. In comparison to other algorithms the proposed algorithm works efficiently and produces 95% accuracy.</description><identifier>ISSN: 2347-4688</identifier><identifier>EISSN: 2321-9971</identifier><identifier>DOI: 10.12944/CARJ.11.2.30</identifier><language>eng</language><publisher>Bhopal: Enviro Research Publishers</publisher><subject>Accuracy ; Agricultural production ; Agriculture ; Algorithms ; Automation ; Classification ; Crop diseases ; Crop yield ; Crops ; Decision trees ; Developed countries ; Developing countries ; Economic development ; Economic growth ; Electronic commerce ; Farmers ; Fertilizers ; Innovations ; LDCs ; Learning algorithms ; Machine learning ; Nutrients ; Outdoor air quality ; Pesticides ; Rain ; Regression analysis ; Technological change</subject><ispartof>Current Agriculture Research Journal, 2023-09, Vol.11 (2), p.686-694</ispartof><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (“License). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1050-7ec9537fd1cf2bfa4c6ae822c1dd08789c78a0ad8ec832a7cdf540fd76646bd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3062325808/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3062325808?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Sutha, K.</creatorcontrib><creatorcontrib>Indumathi, N.</creatorcontrib><creatorcontrib>Uma Shankari, S.</creatorcontrib><title>Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA)</title><title>Current Agriculture Research Journal</title><description>Agriculture is always needed by every human and responsible for the economic growth of a country. Developed countries likewise America, Japan, China are leading and making other countries too dependent on their technologies. But developing countries like India are expecting a lot of new technological innovations in the field of agriculture. Innovations may be in the form of smart machines, automation systems, sensor-based instruments, etc. and an advantage for society. In this paper, we have proposed Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA). The proposed algorithm namely SMLA is compared with other traditional algorithms to predict crop yield. In comparison to other algorithms the proposed algorithm works efficiently and produces 95% accuracy.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Classification</subject><subject>Crop diseases</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Decision trees</subject><subject>Developed countries</subject><subject>Developing countries</subject><subject>Economic development</subject><subject>Economic growth</subject><subject>Electronic commerce</subject><subject>Farmers</subject><subject>Fertilizers</subject><subject>Innovations</subject><subject>LDCs</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Nutrients</subject><subject>Outdoor air quality</subject><subject>Pesticides</subject><subject>Rain</subject><subject>Regression analysis</subject><subject>Technological change</subject><issn>2347-4688</issn><issn>2321-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkL1PwzAQxS0EElXpyG6JBYYEf8V2xiiCAkoFasvAZLn-aFM1SbHTgf-ehDLd3dO7e7ofALcYpZjkjD2WxfItxTglKUUXYEIowUmeC3w59kwkjEt5DWYx7hFCJOeMEDEB66UzXdO41tbtFurWwo_gbG36cSxDd4RftTtYeIqjsGp06OFCm13dOlg5HdpRLg7bLtT9roH3q0VVPNyAK68P0c3-6xR8Pj-ty5ekep-_lkWVGIwylAhn8owKb7HxZOM1M1w7SYjB1iIpZG6E1Ehb6YykRAtjfcaQt4JzxjdW0im4O989hu775GKv9t0ptEOkoogPBDKJRldydpnQxRicV8dQD4_8KIzUHzs1slMYKzLs0V-KwGCn</recordid><startdate>20230925</startdate><enddate>20230925</enddate><creator>Sutha, K.</creator><creator>Indumathi, N.</creator><creator>Uma Shankari, S.</creator><general>Enviro Research Publishers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230925</creationdate><title>Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA)</title><author>Sutha, K. ; Indumathi, N. ; Uma Shankari, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1050-7ec9537fd1cf2bfa4c6ae822c1dd08789c78a0ad8ec832a7cdf540fd76646bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Classification</topic><topic>Crop diseases</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Decision trees</topic><topic>Developed countries</topic><topic>Developing countries</topic><topic>Economic development</topic><topic>Economic growth</topic><topic>Electronic commerce</topic><topic>Farmers</topic><topic>Fertilizers</topic><topic>Innovations</topic><topic>LDCs</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Nutrients</topic><topic>Outdoor air quality</topic><topic>Pesticides</topic><topic>Rain</topic><topic>Regression analysis</topic><topic>Technological change</topic><toplevel>online_resources</toplevel><creatorcontrib>Sutha, K.</creatorcontrib><creatorcontrib>Indumathi, N.</creatorcontrib><creatorcontrib>Uma Shankari, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Current Agriculture Research Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sutha, K.</au><au>Indumathi, N.</au><au>Uma Shankari, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA)</atitle><jtitle>Current Agriculture Research Journal</jtitle><date>2023-09-25</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>686</spage><epage>694</epage><pages>686-694</pages><issn>2347-4688</issn><eissn>2321-9971</eissn><abstract>Agriculture is always needed by every human and responsible for the economic growth of a country. Developed countries likewise America, Japan, China are leading and making other countries too dependent on their technologies. But developing countries like India are expecting a lot of new technological innovations in the field of agriculture. Innovations may be in the form of smart machines, automation systems, sensor-based instruments, etc. and an advantage for society. In this paper, we have proposed Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA). The proposed algorithm namely SMLA is compared with other traditional algorithms to predict crop yield. In comparison to other algorithms the proposed algorithm works efficiently and produces 95% accuracy.</abstract><cop>Bhopal</cop><pub>Enviro Research Publishers</pub><doi>10.12944/CARJ.11.2.30</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2347-4688
ispartof Current Agriculture Research Journal, 2023-09, Vol.11 (2), p.686-694
issn 2347-4688
2321-9971
language eng
recordid cdi_proquest_journals_3062325808
source Access via ProQuest (Open Access)
subjects Accuracy
Agricultural production
Agriculture
Algorithms
Automation
Classification
Crop diseases
Crop yield
Crops
Decision trees
Developed countries
Developing countries
Economic development
Economic growth
Electronic commerce
Farmers
Fertilizers
Innovations
LDCs
Learning algorithms
Machine learning
Nutrients
Outdoor air quality
Pesticides
Rain
Regression analysis
Technological change
title Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recommending%20and%20Predicting%20Crop%20Yield%20using%20Smart%20Machine%20Learning%20Algorithm%20(SMLA)&rft.jtitle=Current%20Agriculture%20Research%20Journal&rft.au=Sutha,%20K.&rft.date=2023-09-25&rft.volume=11&rft.issue=2&rft.spage=686&rft.epage=694&rft.pages=686-694&rft.issn=2347-4688&rft.eissn=2321-9971&rft_id=info:doi/10.12944/CARJ.11.2.30&rft_dat=%3Cproquest_cross%3E3062325808%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1050-7ec9537fd1cf2bfa4c6ae822c1dd08789c78a0ad8ec832a7cdf540fd76646bd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3062325808&rft_id=info:pmid/&rfr_iscdi=true