Loading…
Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA)
Agriculture is always needed by every human and responsible for the economic growth of a country. Developed countries likewise America, Japan, China are leading and making other countries too dependent on their technologies. But developing countries like India are expecting a lot of new technologica...
Saved in:
Published in: | Current Agriculture Research Journal 2023-09, Vol.11 (2), p.686-694 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1050-7ec9537fd1cf2bfa4c6ae822c1dd08789c78a0ad8ec832a7cdf540fd76646bd83 |
container_end_page | 694 |
container_issue | 2 |
container_start_page | 686 |
container_title | Current Agriculture Research Journal |
container_volume | 11 |
creator | Sutha, K. Indumathi, N. Uma Shankari, S. |
description | Agriculture is always needed by every human and responsible for the economic growth of a country. Developed countries likewise America, Japan, China are leading and making other countries too dependent on their technologies. But developing countries like India are expecting a lot of new technological innovations in the field of agriculture. Innovations may be in the form of smart machines, automation systems, sensor-based instruments, etc. and an advantage for society. In this paper, we have proposed Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA). The proposed algorithm namely SMLA is compared with other traditional algorithms to predict crop yield. In comparison to other algorithms the proposed algorithm works efficiently and produces 95% accuracy. |
doi_str_mv | 10.12944/CARJ.11.2.30 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062325808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062325808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1050-7ec9537fd1cf2bfa4c6ae822c1dd08789c78a0ad8ec832a7cdf540fd76646bd83</originalsourceid><addsrcrecordid>eNotkL1PwzAQxS0EElXpyG6JBYYEf8V2xiiCAkoFasvAZLn-aFM1SbHTgf-ehDLd3dO7e7ofALcYpZjkjD2WxfItxTglKUUXYEIowUmeC3w59kwkjEt5DWYx7hFCJOeMEDEB66UzXdO41tbtFurWwo_gbG36cSxDd4RftTtYeIqjsGp06OFCm13dOlg5HdpRLg7bLtT9roH3q0VVPNyAK68P0c3-6xR8Pj-ty5ekep-_lkWVGIwylAhn8owKb7HxZOM1M1w7SYjB1iIpZG6E1Ehb6YykRAtjfcaQt4JzxjdW0im4O989hu775GKv9t0ptEOkoogPBDKJRldydpnQxRicV8dQD4_8KIzUHzs1slMYKzLs0V-KwGCn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062325808</pqid></control><display><type>article</type><title>Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA)</title><source>Access via ProQuest (Open Access)</source><creator>Sutha, K. ; Indumathi, N. ; Uma Shankari, S.</creator><creatorcontrib>Sutha, K. ; Indumathi, N. ; Uma Shankari, S.</creatorcontrib><description>Agriculture is always needed by every human and responsible for the economic growth of a country. Developed countries likewise America, Japan, China are leading and making other countries too dependent on their technologies. But developing countries like India are expecting a lot of new technological innovations in the field of agriculture. Innovations may be in the form of smart machines, automation systems, sensor-based instruments, etc. and an advantage for society. In this paper, we have proposed Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA). The proposed algorithm namely SMLA is compared with other traditional algorithms to predict crop yield. In comparison to other algorithms the proposed algorithm works efficiently and produces 95% accuracy.</description><identifier>ISSN: 2347-4688</identifier><identifier>EISSN: 2321-9971</identifier><identifier>DOI: 10.12944/CARJ.11.2.30</identifier><language>eng</language><publisher>Bhopal: Enviro Research Publishers</publisher><subject>Accuracy ; Agricultural production ; Agriculture ; Algorithms ; Automation ; Classification ; Crop diseases ; Crop yield ; Crops ; Decision trees ; Developed countries ; Developing countries ; Economic development ; Economic growth ; Electronic commerce ; Farmers ; Fertilizers ; Innovations ; LDCs ; Learning algorithms ; Machine learning ; Nutrients ; Outdoor air quality ; Pesticides ; Rain ; Regression analysis ; Technological change</subject><ispartof>Current Agriculture Research Journal, 2023-09, Vol.11 (2), p.686-694</ispartof><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (“License). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1050-7ec9537fd1cf2bfa4c6ae822c1dd08789c78a0ad8ec832a7cdf540fd76646bd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3062325808/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3062325808?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Sutha, K.</creatorcontrib><creatorcontrib>Indumathi, N.</creatorcontrib><creatorcontrib>Uma Shankari, S.</creatorcontrib><title>Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA)</title><title>Current Agriculture Research Journal</title><description>Agriculture is always needed by every human and responsible for the economic growth of a country. Developed countries likewise America, Japan, China are leading and making other countries too dependent on their technologies. But developing countries like India are expecting a lot of new technological innovations in the field of agriculture. Innovations may be in the form of smart machines, automation systems, sensor-based instruments, etc. and an advantage for society. In this paper, we have proposed Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA). The proposed algorithm namely SMLA is compared with other traditional algorithms to predict crop yield. In comparison to other algorithms the proposed algorithm works efficiently and produces 95% accuracy.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Classification</subject><subject>Crop diseases</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Decision trees</subject><subject>Developed countries</subject><subject>Developing countries</subject><subject>Economic development</subject><subject>Economic growth</subject><subject>Electronic commerce</subject><subject>Farmers</subject><subject>Fertilizers</subject><subject>Innovations</subject><subject>LDCs</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Nutrients</subject><subject>Outdoor air quality</subject><subject>Pesticides</subject><subject>Rain</subject><subject>Regression analysis</subject><subject>Technological change</subject><issn>2347-4688</issn><issn>2321-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkL1PwzAQxS0EElXpyG6JBYYEf8V2xiiCAkoFasvAZLn-aFM1SbHTgf-ehDLd3dO7e7ofALcYpZjkjD2WxfItxTglKUUXYEIowUmeC3w59kwkjEt5DWYx7hFCJOeMEDEB66UzXdO41tbtFurWwo_gbG36cSxDd4RftTtYeIqjsGp06OFCm13dOlg5HdpRLg7bLtT9roH3q0VVPNyAK68P0c3-6xR8Pj-ty5ekep-_lkWVGIwylAhn8owKb7HxZOM1M1w7SYjB1iIpZG6E1Ehb6YykRAtjfcaQt4JzxjdW0im4O989hu775GKv9t0ptEOkoogPBDKJRldydpnQxRicV8dQD4_8KIzUHzs1slMYKzLs0V-KwGCn</recordid><startdate>20230925</startdate><enddate>20230925</enddate><creator>Sutha, K.</creator><creator>Indumathi, N.</creator><creator>Uma Shankari, S.</creator><general>Enviro Research Publishers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230925</creationdate><title>Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA)</title><author>Sutha, K. ; Indumathi, N. ; Uma Shankari, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1050-7ec9537fd1cf2bfa4c6ae822c1dd08789c78a0ad8ec832a7cdf540fd76646bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Classification</topic><topic>Crop diseases</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Decision trees</topic><topic>Developed countries</topic><topic>Developing countries</topic><topic>Economic development</topic><topic>Economic growth</topic><topic>Electronic commerce</topic><topic>Farmers</topic><topic>Fertilizers</topic><topic>Innovations</topic><topic>LDCs</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Nutrients</topic><topic>Outdoor air quality</topic><topic>Pesticides</topic><topic>Rain</topic><topic>Regression analysis</topic><topic>Technological change</topic><toplevel>online_resources</toplevel><creatorcontrib>Sutha, K.</creatorcontrib><creatorcontrib>Indumathi, N.</creatorcontrib><creatorcontrib>Uma Shankari, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Current Agriculture Research Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sutha, K.</au><au>Indumathi, N.</au><au>Uma Shankari, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA)</atitle><jtitle>Current Agriculture Research Journal</jtitle><date>2023-09-25</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>686</spage><epage>694</epage><pages>686-694</pages><issn>2347-4688</issn><eissn>2321-9971</eissn><abstract>Agriculture is always needed by every human and responsible for the economic growth of a country. Developed countries likewise America, Japan, China are leading and making other countries too dependent on their technologies. But developing countries like India are expecting a lot of new technological innovations in the field of agriculture. Innovations may be in the form of smart machines, automation systems, sensor-based instruments, etc. and an advantage for society. In this paper, we have proposed Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA). The proposed algorithm namely SMLA is compared with other traditional algorithms to predict crop yield. In comparison to other algorithms the proposed algorithm works efficiently and produces 95% accuracy.</abstract><cop>Bhopal</cop><pub>Enviro Research Publishers</pub><doi>10.12944/CARJ.11.2.30</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2347-4688 |
ispartof | Current Agriculture Research Journal, 2023-09, Vol.11 (2), p.686-694 |
issn | 2347-4688 2321-9971 |
language | eng |
recordid | cdi_proquest_journals_3062325808 |
source | Access via ProQuest (Open Access) |
subjects | Accuracy Agricultural production Agriculture Algorithms Automation Classification Crop diseases Crop yield Crops Decision trees Developed countries Developing countries Economic development Economic growth Electronic commerce Farmers Fertilizers Innovations LDCs Learning algorithms Machine learning Nutrients Outdoor air quality Pesticides Rain Regression analysis Technological change |
title | Recommending and Predicting Crop Yield using Smart Machine Learning Algorithm (SMLA) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recommending%20and%20Predicting%20Crop%20Yield%20using%20Smart%20Machine%20Learning%20Algorithm%20(SMLA)&rft.jtitle=Current%20Agriculture%20Research%20Journal&rft.au=Sutha,%20K.&rft.date=2023-09-25&rft.volume=11&rft.issue=2&rft.spage=686&rft.epage=694&rft.pages=686-694&rft.issn=2347-4688&rft.eissn=2321-9971&rft_id=info:doi/10.12944/CARJ.11.2.30&rft_dat=%3Cproquest_cross%3E3062325808%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1050-7ec9537fd1cf2bfa4c6ae822c1dd08789c78a0ad8ec832a7cdf540fd76646bd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3062325808&rft_id=info:pmid/&rfr_iscdi=true |