Loading…

A Hierarchical Distributed Coordination Framework for Flexible and Resilient Vehicle Platooning

This study addresses the challenges and solutions for achieving flexible and resilient platooning in Intelligent and Connected Vehicles (ICVs) under diverse constraints. We focus on enabling vehicles to freely join or leave the platoon and maintaining resilience against adversarial cyberattacks with...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2024-06, Vol.25 (6), p.6090-6105
Main Authors: Wei, Henglai, Aparow, Vimal Rau, Hu, Bin-Bin, Lv, Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study addresses the challenges and solutions for achieving flexible and resilient platooning in Intelligent and Connected Vehicles (ICVs) under diverse constraints. We focus on enabling vehicles to freely join or leave the platoon and maintaining resilience against adversarial cyberattacks within the network. We propose a hierarchical distributed coordination framework that combines high-level event-driven cluster coordination with lower-level decoupled longitudinal and lateral control designs. Each normal vehicle updates its longitudinal state by solving a distributed optimization-based control problem, utilizing both itself and neighboring vehicles' information. Meanwhile, the lateral control scheme employs a decentralized optimization algorithm to facilitate lane-changing coordination. Additionally, we develop a distributed attack detection algorithm that enables the identification and removal of adversarial vehicles from the platoon. The stability of the closed-loop system is proven, and simulation results validate the effectiveness of our framework in achieving flexible and resilient vehicle platooning.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2023.3335389