Loading…

Cervical precancerous lesion classification using quantum invasive weed optimization with deep learning on biomedical pap smear images

Biomedical imaging devices, in general, have been made and used a lot lately to examine the insides of the body during diagnostic and analytic procedures. Biomedical imaging gives accurate information about metabolites, which can be used to find and classify diseases because it is not invasive. For...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems 2024-07, Vol.41 (7), p.n/a
Main Authors: Mishra, Awanish Kumar, Gupta, Indresh Kumar, Diwan, Tarun Dhar, Srivastava, Swati
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3018-df2e12cf52cf5fed9dba0190e0c1612283caa755c1281049458ea25d97041cb43
cites cdi_FETCH-LOGICAL-c3018-df2e12cf52cf5fed9dba0190e0c1612283caa755c1281049458ea25d97041cb43
container_end_page n/a
container_issue 7
container_start_page
container_title Expert systems
container_volume 41
creator Mishra, Awanish Kumar
Gupta, Indresh Kumar
Diwan, Tarun Dhar
Srivastava, Swati
description Biomedical imaging devices, in general, have been made and used a lot lately to examine the insides of the body during diagnostic and analytic procedures. Biomedical imaging gives accurate information about metabolites, which can be used to find and classify diseases because it is not invasive. For the study of cervical cancer (CC), the pap smear is a crucial type of biological imaging. CC is a crucial reason to enhance the rate of women's mortalities. Proper screening of pap smear images is critical for assisting in the early detection and analysis of CC. Computer‐aided systems for cancerous cell recognition need well established artificial intelligence (AI) methods. In this study, we introduce an automated Cervical Precancerous Lesion Classification using Quantum Invasive Weed Optimization with Deep Learning (CPLC‐QIWODL) on biomedical pap smear images. The presented CPLC‐QIWODL technique examines the pap smear images for cervical cancer classification. To do so, the presented CPLC‐QIWODL technique pre‐processes the biomedical images using a Gabor filtering (GF) approach. Moreover, the CPLC‐QIWODL technique uses a deep convolutional neural network‐based SqueezeNet system for feature extraction. Furthermore, the hyperparameter tuning of the SqueezeNet methodology takes place using the QIWO technique, showing the novelty of the work. Finally, to classify CC, the deep variational autoencoder (DVAE) model is applied. The experimental result analysis of the CPLC‐QIWODL technique is tested using a benchmark medical image database. Extensive comparative results demonstrated the enhanced outcomes of the CPLC‐QIWODL technique over other existing algorithms, with a maximum accuracy of 99.07%.
doi_str_mv 10.1111/exsy.13308
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3063859531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063859531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3018-df2e12cf52cf5fed9dba0190e0c1612283caa755c1281049458ea25d97041cb43</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKsXP0HAm7A1k-zzKKU-oOBBBT2FNDtbU_bVZLe1fgA_t1nXswPDMDO_efAn5BLYDLzd4Kc7zEAIlh6RCYRxGjCRhcdkwngcB2HC2Sk5c27DGIMkiSfke452Z7QqaWtRq1qjbXpHS3SmqakulXOm8P1uSHtn6jXd9qru-oqaeqec2SHdI-a0aTtTma8R3Jvug-aIrV-kbD1M-erKNBXm4zHVUlf5HjWVWqM7JyeFKh1e_MUpeb1bvMwfguXT_eP8dhlowSAN8oIjcF1EgxeYZ_lKMcgYMg0xcJ4KrVQSRRp4CizMwihFxaM8S1gIehWKKbka97a22fboOrlpelv7k1KwWKRRFgnw1PVIads4Z7GQrfV_2oMEJged5aCz_NXZwzDCe1Pi4R9SLt6e38eZH_Eug7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063859531</pqid></control><display><type>article</type><title>Cervical precancerous lesion classification using quantum invasive weed optimization with deep learning on biomedical pap smear images</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mishra, Awanish Kumar ; Gupta, Indresh Kumar ; Diwan, Tarun Dhar ; Srivastava, Swati</creator><creatorcontrib>Mishra, Awanish Kumar ; Gupta, Indresh Kumar ; Diwan, Tarun Dhar ; Srivastava, Swati</creatorcontrib><description>Biomedical imaging devices, in general, have been made and used a lot lately to examine the insides of the body during diagnostic and analytic procedures. Biomedical imaging gives accurate information about metabolites, which can be used to find and classify diseases because it is not invasive. For the study of cervical cancer (CC), the pap smear is a crucial type of biological imaging. CC is a crucial reason to enhance the rate of women's mortalities. Proper screening of pap smear images is critical for assisting in the early detection and analysis of CC. Computer‐aided systems for cancerous cell recognition need well established artificial intelligence (AI) methods. In this study, we introduce an automated Cervical Precancerous Lesion Classification using Quantum Invasive Weed Optimization with Deep Learning (CPLC‐QIWODL) on biomedical pap smear images. The presented CPLC‐QIWODL technique examines the pap smear images for cervical cancer classification. To do so, the presented CPLC‐QIWODL technique pre‐processes the biomedical images using a Gabor filtering (GF) approach. Moreover, the CPLC‐QIWODL technique uses a deep convolutional neural network‐based SqueezeNet system for feature extraction. Furthermore, the hyperparameter tuning of the SqueezeNet methodology takes place using the QIWO technique, showing the novelty of the work. Finally, to classify CC, the deep variational autoencoder (DVAE) model is applied. The experimental result analysis of the CPLC‐QIWODL technique is tested using a benchmark medical image database. Extensive comparative results demonstrated the enhanced outcomes of the CPLC‐QIWODL technique over other existing algorithms, with a maximum accuracy of 99.07%.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/exsy.13308</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; biomedical imaging ; Cancer ; Cervical cancer ; Classification ; Deep learning ; Feature extraction ; Image enhancement ; Image filters ; Lesions ; Medical imaging ; Metabolites ; metaheuristics ; Optimization ; Pap smear ; pap smear images</subject><ispartof>Expert systems, 2024-07, Vol.41 (7), p.n/a</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3018-df2e12cf52cf5fed9dba0190e0c1612283caa755c1281049458ea25d97041cb43</citedby><cites>FETCH-LOGICAL-c3018-df2e12cf52cf5fed9dba0190e0c1612283caa755c1281049458ea25d97041cb43</cites><orcidid>0000-0002-3172-5843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mishra, Awanish Kumar</creatorcontrib><creatorcontrib>Gupta, Indresh Kumar</creatorcontrib><creatorcontrib>Diwan, Tarun Dhar</creatorcontrib><creatorcontrib>Srivastava, Swati</creatorcontrib><title>Cervical precancerous lesion classification using quantum invasive weed optimization with deep learning on biomedical pap smear images</title><title>Expert systems</title><description>Biomedical imaging devices, in general, have been made and used a lot lately to examine the insides of the body during diagnostic and analytic procedures. Biomedical imaging gives accurate information about metabolites, which can be used to find and classify diseases because it is not invasive. For the study of cervical cancer (CC), the pap smear is a crucial type of biological imaging. CC is a crucial reason to enhance the rate of women's mortalities. Proper screening of pap smear images is critical for assisting in the early detection and analysis of CC. Computer‐aided systems for cancerous cell recognition need well established artificial intelligence (AI) methods. In this study, we introduce an automated Cervical Precancerous Lesion Classification using Quantum Invasive Weed Optimization with Deep Learning (CPLC‐QIWODL) on biomedical pap smear images. The presented CPLC‐QIWODL technique examines the pap smear images for cervical cancer classification. To do so, the presented CPLC‐QIWODL technique pre‐processes the biomedical images using a Gabor filtering (GF) approach. Moreover, the CPLC‐QIWODL technique uses a deep convolutional neural network‐based SqueezeNet system for feature extraction. Furthermore, the hyperparameter tuning of the SqueezeNet methodology takes place using the QIWO technique, showing the novelty of the work. Finally, to classify CC, the deep variational autoencoder (DVAE) model is applied. The experimental result analysis of the CPLC‐QIWODL technique is tested using a benchmark medical image database. Extensive comparative results demonstrated the enhanced outcomes of the CPLC‐QIWODL technique over other existing algorithms, with a maximum accuracy of 99.07%.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>biomedical imaging</subject><subject>Cancer</subject><subject>Cervical cancer</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image filters</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>Metabolites</subject><subject>metaheuristics</subject><subject>Optimization</subject><subject>Pap smear</subject><subject>pap smear images</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKsXP0HAm7A1k-zzKKU-oOBBBT2FNDtbU_bVZLe1fgA_t1nXswPDMDO_efAn5BLYDLzd4Kc7zEAIlh6RCYRxGjCRhcdkwngcB2HC2Sk5c27DGIMkiSfke452Z7QqaWtRq1qjbXpHS3SmqakulXOm8P1uSHtn6jXd9qru-oqaeqec2SHdI-a0aTtTma8R3Jvug-aIrV-kbD1M-erKNBXm4zHVUlf5HjWVWqM7JyeFKh1e_MUpeb1bvMwfguXT_eP8dhlowSAN8oIjcF1EgxeYZ_lKMcgYMg0xcJ4KrVQSRRp4CizMwihFxaM8S1gIehWKKbka97a22fboOrlpelv7k1KwWKRRFgnw1PVIads4Z7GQrfV_2oMEJged5aCz_NXZwzDCe1Pi4R9SLt6e38eZH_Eug7U</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Mishra, Awanish Kumar</creator><creator>Gupta, Indresh Kumar</creator><creator>Diwan, Tarun Dhar</creator><creator>Srivastava, Swati</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3172-5843</orcidid></search><sort><creationdate>202407</creationdate><title>Cervical precancerous lesion classification using quantum invasive weed optimization with deep learning on biomedical pap smear images</title><author>Mishra, Awanish Kumar ; Gupta, Indresh Kumar ; Diwan, Tarun Dhar ; Srivastava, Swati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3018-df2e12cf52cf5fed9dba0190e0c1612283caa755c1281049458ea25d97041cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>biomedical imaging</topic><topic>Cancer</topic><topic>Cervical cancer</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image filters</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>Metabolites</topic><topic>metaheuristics</topic><topic>Optimization</topic><topic>Pap smear</topic><topic>pap smear images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Awanish Kumar</creatorcontrib><creatorcontrib>Gupta, Indresh Kumar</creatorcontrib><creatorcontrib>Diwan, Tarun Dhar</creatorcontrib><creatorcontrib>Srivastava, Swati</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Awanish Kumar</au><au>Gupta, Indresh Kumar</au><au>Diwan, Tarun Dhar</au><au>Srivastava, Swati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cervical precancerous lesion classification using quantum invasive weed optimization with deep learning on biomedical pap smear images</atitle><jtitle>Expert systems</jtitle><date>2024-07</date><risdate>2024</risdate><volume>41</volume><issue>7</issue><epage>n/a</epage><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>Biomedical imaging devices, in general, have been made and used a lot lately to examine the insides of the body during diagnostic and analytic procedures. Biomedical imaging gives accurate information about metabolites, which can be used to find and classify diseases because it is not invasive. For the study of cervical cancer (CC), the pap smear is a crucial type of biological imaging. CC is a crucial reason to enhance the rate of women's mortalities. Proper screening of pap smear images is critical for assisting in the early detection and analysis of CC. Computer‐aided systems for cancerous cell recognition need well established artificial intelligence (AI) methods. In this study, we introduce an automated Cervical Precancerous Lesion Classification using Quantum Invasive Weed Optimization with Deep Learning (CPLC‐QIWODL) on biomedical pap smear images. The presented CPLC‐QIWODL technique examines the pap smear images for cervical cancer classification. To do so, the presented CPLC‐QIWODL technique pre‐processes the biomedical images using a Gabor filtering (GF) approach. Moreover, the CPLC‐QIWODL technique uses a deep convolutional neural network‐based SqueezeNet system for feature extraction. Furthermore, the hyperparameter tuning of the SqueezeNet methodology takes place using the QIWO technique, showing the novelty of the work. Finally, to classify CC, the deep variational autoencoder (DVAE) model is applied. The experimental result analysis of the CPLC‐QIWODL technique is tested using a benchmark medical image database. Extensive comparative results demonstrated the enhanced outcomes of the CPLC‐QIWODL technique over other existing algorithms, with a maximum accuracy of 99.07%.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/exsy.13308</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3172-5843</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-4720
ispartof Expert systems, 2024-07, Vol.41 (7), p.n/a
issn 0266-4720
1468-0394
language eng
recordid cdi_proquest_journals_3063859531
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Artificial intelligence
Artificial neural networks
biomedical imaging
Cancer
Cervical cancer
Classification
Deep learning
Feature extraction
Image enhancement
Image filters
Lesions
Medical imaging
Metabolites
metaheuristics
Optimization
Pap smear
pap smear images
title Cervical precancerous lesion classification using quantum invasive weed optimization with deep learning on biomedical pap smear images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cervical%20precancerous%20lesion%20classification%20using%20quantum%20invasive%20weed%20optimization%20with%20deep%20learning%20on%20biomedical%20pap%20smear%20images&rft.jtitle=Expert%20systems&rft.au=Mishra,%20Awanish%20Kumar&rft.date=2024-07&rft.volume=41&rft.issue=7&rft.epage=n/a&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/exsy.13308&rft_dat=%3Cproquest_cross%3E3063859531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3018-df2e12cf52cf5fed9dba0190e0c1612283caa755c1281049458ea25d97041cb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3063859531&rft_id=info:pmid/&rfr_iscdi=true