Loading…

Decellularized Prostate for Cancer Studies

Regenerative medicine researchers are interested in extracellular matrix (ECM) investigations around fabricating scaffolds that mimic the biological environment. These structures can be utilized in different disease and drug screenings as three-dimensional (3D) models. This study aimed to decellular...

Full description

Saved in:
Bibliographic Details
Published in:Cell and tissue biology 2024, Vol.18 (3), p.280-288
Main Authors: Mozafar Khazaei, Khazaei, Mohammad Rasool, Ghanbari, Elham, Rezakhania, Leila
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Regenerative medicine researchers are interested in extracellular matrix (ECM) investigations around fabricating scaffolds that mimic the biological environment. These structures can be utilized in different disease and drug screenings as three-dimensional (3D) models. This study aimed to decellularization of rat prostate by different methods to reach a suitable scaffold and introduce it in cancer studies. In this experimental study, rat prostates were decellularized by 1% sodium dodecyl sulfate (SDS) and 1% sodium deoxycholate (SD) methods. Decellularized prostate matrix (DPM) was stained using hematoxylin-eosin (H&E) and Masson’s trichrome (MT) techniques to determine the presence of the nucleus and collagen. A scanning electron microscope (SEM) was used to examine the morphology and cell attachment to the DPM. By culturing LNcap cells on the DPM, recellularization was studied. Both decellularization methods (1% SDS and 1% SD) completely removed the cells from the DPM. The tissue structure has been significantly preserved, which is confirmed by the staining methods and SEM images. The preservation of a large amount of collagen content was established through MT staining and using the kit. Cell adhesion in the DPM was reported by SEM. No toxicity or hemolysis was observed in the DPM. Migration of cancer cells into the DPM was seen. Prostate decellularization with SDS and SD, in addition to cell removal, can maintain the ECM structure to a large extent without having cytotoxic and hemolysis effects.
ISSN:1990-519X
1990-5203
DOI:10.1134/S1990519X24700160