Loading…
Influence of radio frequency wave driving frequency on capacitively coupled plasma discharge
A two-dimensional symmetric fluid model is established to study the influence of radio frequency (RF) wave driving frequency on the capacitively coupled plasma discharge. The relationship between the driving frequency and electron density is obtained by solving the electron energy balance equation....
Saved in:
Published in: | AIP advances 2024-06, Vol.14 (6), p.065104-065104-8 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c283t-54f84286dac3c8f0efd4251397db9ffa12635d06e7dea03f3f727e418d42ee253 |
container_end_page | 065104-8 |
container_issue | 6 |
container_start_page | 065104 |
container_title | AIP advances |
container_volume | 14 |
creator | Yang, Song Zhang, Wen Shen, Junfeng Liu, Hai Tang, Changjian Xu, Yuhong Cheng, Jun Shao, Junren Xiong, Jian Wang, Xianqu Liu, Haifeng Huang, Jie Zhang, Xin Lan, Heng Li, Yucai |
description | A two-dimensional symmetric fluid model is established to study the influence of radio frequency (RF) wave driving frequency on the capacitively coupled plasma discharge. The relationship between the driving frequency and electron density is obtained by solving the electron energy balance equation. The calculation results show that the average electron density first increases rapidly with the increase in driving frequency and then gradually tends to saturation at a threshold frequency. A fluid simulation is also carried out, which provides similar results. Physical studies on this phenomenon are conducted, revealing that the essence of this phenomenon is due to the inability of electrons to quickly respond to potential changes within the boundary sheath when the driving frequency of RF exceeds the plasma frequency. In addition, it is also found that increasing gas pressure can enhance the electron density and the type of gas can also affect the electron density. |
doi_str_mv | 10.1063/5.0202071 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064315964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_489ef4668f9948a5869a0749e2bf7a6b</doaj_id><sourcerecordid>3064315964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-54f84286dac3c8f0efd4251397db9ffa12635d06e7dea03f3f727e418d42ee253</originalsourceid><addsrcrecordid>eNp9kV1rVDEQhoNYsKy98B8EvFLYmu-TXEpRu1DwRu8KYTaZrFlOT47J2ZX996ZuKb1yAjPh5eGdSYaQd5xdc2bkJ33NRD8Df0UuBdd2LYUwr1_c35Cr1vash3KcWXVJ7jdTGg84BaQl0QoxF5oq_n6UTvQPHJHGmo952r2Qy0QDzBDyko84nmgoh3nESOcR2gPQmFv4BXWHb8lFgrHh1VNdkZ9fv_y4uV3fff-2ufl8tw7CymWtVbJKWBMhyGATwxSV0Fy6IW5dSsCFkToyg0NEYDLJNIgBFbcdQxRarsjm7BsL7P1c8wPUky-Q_T-h1J2HuuQwolfWYVLG2OScsqCtccAG5VBs0wBm273en73mWvpz2-L35VCnPr6XzCjJtet5RT6cqVBLaxXTc1fO_OMuvPZPu-jsxzPb-ofBksv0H_gv9ViIbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064315964</pqid></control><display><type>article</type><title>Influence of radio frequency wave driving frequency on capacitively coupled plasma discharge</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Song ; Zhang, Wen ; Shen, Junfeng ; Liu, Hai ; Tang, Changjian ; Xu, Yuhong ; Cheng, Jun ; Shao, Junren ; Xiong, Jian ; Wang, Xianqu ; Liu, Haifeng ; Huang, Jie ; Zhang, Xin ; Lan, Heng ; Li, Yucai</creator><creatorcontrib>Yang, Song ; Zhang, Wen ; Shen, Junfeng ; Liu, Hai ; Tang, Changjian ; Xu, Yuhong ; Cheng, Jun ; Shao, Junren ; Xiong, Jian ; Wang, Xianqu ; Liu, Haifeng ; Huang, Jie ; Zhang, Xin ; Lan, Heng ; Li, Yucai</creatorcontrib><description>A two-dimensional symmetric fluid model is established to study the influence of radio frequency (RF) wave driving frequency on the capacitively coupled plasma discharge. The relationship between the driving frequency and electron density is obtained by solving the electron energy balance equation. The calculation results show that the average electron density first increases rapidly with the increase in driving frequency and then gradually tends to saturation at a threshold frequency. A fluid simulation is also carried out, which provides similar results. Physical studies on this phenomenon are conducted, revealing that the essence of this phenomenon is due to the inability of electrons to quickly respond to potential changes within the boundary sheath when the driving frequency of RF exceeds the plasma frequency. In addition, it is also found that increasing gas pressure can enhance the electron density and the type of gas can also affect the electron density.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0202071</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Electron density ; Electron energy ; Gas pressure ; Plasma frequencies ; Plasma jets ; Radio frequency ; Sheaths</subject><ispartof>AIP advances, 2024-06, Vol.14 (6), p.065104-065104-8</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-54f84286dac3c8f0efd4251397db9ffa12635d06e7dea03f3f727e418d42ee253</cites><orcidid>0000-0003-4179-943X ; 0009-0006-7507-6087 ; 0000-0002-0496-5542 ; 0000-0001-7273-0350 ; 0000-0001-8485-895X ; 0000-0003-4882-647X ; 0000-0001-6407-5958 ; 0000-0003-1630-014X ; 0000-0002-0424-645X ; 0000-0002-1622-1997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/5.0202071$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27871,27905,27906,76157</link.rule.ids></links><search><creatorcontrib>Yang, Song</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Shen, Junfeng</creatorcontrib><creatorcontrib>Liu, Hai</creatorcontrib><creatorcontrib>Tang, Changjian</creatorcontrib><creatorcontrib>Xu, Yuhong</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Shao, Junren</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Wang, Xianqu</creatorcontrib><creatorcontrib>Liu, Haifeng</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Lan, Heng</creatorcontrib><creatorcontrib>Li, Yucai</creatorcontrib><title>Influence of radio frequency wave driving frequency on capacitively coupled plasma discharge</title><title>AIP advances</title><description>A two-dimensional symmetric fluid model is established to study the influence of radio frequency (RF) wave driving frequency on the capacitively coupled plasma discharge. The relationship between the driving frequency and electron density is obtained by solving the electron energy balance equation. The calculation results show that the average electron density first increases rapidly with the increase in driving frequency and then gradually tends to saturation at a threshold frequency. A fluid simulation is also carried out, which provides similar results. Physical studies on this phenomenon are conducted, revealing that the essence of this phenomenon is due to the inability of electrons to quickly respond to potential changes within the boundary sheath when the driving frequency of RF exceeds the plasma frequency. In addition, it is also found that increasing gas pressure can enhance the electron density and the type of gas can also affect the electron density.</description><subject>Electron density</subject><subject>Electron energy</subject><subject>Gas pressure</subject><subject>Plasma frequencies</subject><subject>Plasma jets</subject><subject>Radio frequency</subject><subject>Sheaths</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV1rVDEQhoNYsKy98B8EvFLYmu-TXEpRu1DwRu8KYTaZrFlOT47J2ZX996ZuKb1yAjPh5eGdSYaQd5xdc2bkJ33NRD8Df0UuBdd2LYUwr1_c35Cr1vash3KcWXVJ7jdTGg84BaQl0QoxF5oq_n6UTvQPHJHGmo952r2Qy0QDzBDyko84nmgoh3nESOcR2gPQmFv4BXWHb8lFgrHh1VNdkZ9fv_y4uV3fff-2ufl8tw7CymWtVbJKWBMhyGATwxSV0Fy6IW5dSsCFkToyg0NEYDLJNIgBFbcdQxRarsjm7BsL7P1c8wPUky-Q_T-h1J2HuuQwolfWYVLG2OScsqCtccAG5VBs0wBm273en73mWvpz2-L35VCnPr6XzCjJtet5RT6cqVBLaxXTc1fO_OMuvPZPu-jsxzPb-ofBksv0H_gv9ViIbg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yang, Song</creator><creator>Zhang, Wen</creator><creator>Shen, Junfeng</creator><creator>Liu, Hai</creator><creator>Tang, Changjian</creator><creator>Xu, Yuhong</creator><creator>Cheng, Jun</creator><creator>Shao, Junren</creator><creator>Xiong, Jian</creator><creator>Wang, Xianqu</creator><creator>Liu, Haifeng</creator><creator>Huang, Jie</creator><creator>Zhang, Xin</creator><creator>Lan, Heng</creator><creator>Li, Yucai</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4179-943X</orcidid><orcidid>https://orcid.org/0009-0006-7507-6087</orcidid><orcidid>https://orcid.org/0000-0002-0496-5542</orcidid><orcidid>https://orcid.org/0000-0001-7273-0350</orcidid><orcidid>https://orcid.org/0000-0001-8485-895X</orcidid><orcidid>https://orcid.org/0000-0003-4882-647X</orcidid><orcidid>https://orcid.org/0000-0001-6407-5958</orcidid><orcidid>https://orcid.org/0000-0003-1630-014X</orcidid><orcidid>https://orcid.org/0000-0002-0424-645X</orcidid><orcidid>https://orcid.org/0000-0002-1622-1997</orcidid></search><sort><creationdate>20240601</creationdate><title>Influence of radio frequency wave driving frequency on capacitively coupled plasma discharge</title><author>Yang, Song ; Zhang, Wen ; Shen, Junfeng ; Liu, Hai ; Tang, Changjian ; Xu, Yuhong ; Cheng, Jun ; Shao, Junren ; Xiong, Jian ; Wang, Xianqu ; Liu, Haifeng ; Huang, Jie ; Zhang, Xin ; Lan, Heng ; Li, Yucai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-54f84286dac3c8f0efd4251397db9ffa12635d06e7dea03f3f727e418d42ee253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electron density</topic><topic>Electron energy</topic><topic>Gas pressure</topic><topic>Plasma frequencies</topic><topic>Plasma jets</topic><topic>Radio frequency</topic><topic>Sheaths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Song</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Shen, Junfeng</creatorcontrib><creatorcontrib>Liu, Hai</creatorcontrib><creatorcontrib>Tang, Changjian</creatorcontrib><creatorcontrib>Xu, Yuhong</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Shao, Junren</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Wang, Xianqu</creatorcontrib><creatorcontrib>Liu, Haifeng</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Lan, Heng</creatorcontrib><creatorcontrib>Li, Yucai</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Song</au><au>Zhang, Wen</au><au>Shen, Junfeng</au><au>Liu, Hai</au><au>Tang, Changjian</au><au>Xu, Yuhong</au><au>Cheng, Jun</au><au>Shao, Junren</au><au>Xiong, Jian</au><au>Wang, Xianqu</au><au>Liu, Haifeng</au><au>Huang, Jie</au><au>Zhang, Xin</au><au>Lan, Heng</au><au>Li, Yucai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of radio frequency wave driving frequency on capacitively coupled plasma discharge</atitle><jtitle>AIP advances</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>14</volume><issue>6</issue><spage>065104</spage><epage>065104-8</epage><pages>065104-065104-8</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>A two-dimensional symmetric fluid model is established to study the influence of radio frequency (RF) wave driving frequency on the capacitively coupled plasma discharge. The relationship between the driving frequency and electron density is obtained by solving the electron energy balance equation. The calculation results show that the average electron density first increases rapidly with the increase in driving frequency and then gradually tends to saturation at a threshold frequency. A fluid simulation is also carried out, which provides similar results. Physical studies on this phenomenon are conducted, revealing that the essence of this phenomenon is due to the inability of electrons to quickly respond to potential changes within the boundary sheath when the driving frequency of RF exceeds the plasma frequency. In addition, it is also found that increasing gas pressure can enhance the electron density and the type of gas can also affect the electron density.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0202071</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4179-943X</orcidid><orcidid>https://orcid.org/0009-0006-7507-6087</orcidid><orcidid>https://orcid.org/0000-0002-0496-5542</orcidid><orcidid>https://orcid.org/0000-0001-7273-0350</orcidid><orcidid>https://orcid.org/0000-0001-8485-895X</orcidid><orcidid>https://orcid.org/0000-0003-4882-647X</orcidid><orcidid>https://orcid.org/0000-0001-6407-5958</orcidid><orcidid>https://orcid.org/0000-0003-1630-014X</orcidid><orcidid>https://orcid.org/0000-0002-0424-645X</orcidid><orcidid>https://orcid.org/0000-0002-1622-1997</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2024-06, Vol.14 (6), p.065104-065104-8 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_proquest_journals_3064315964 |
source | AIP Open Access Journals; Free Full-Text Journals in Chemistry |
subjects | Electron density Electron energy Gas pressure Plasma frequencies Plasma jets Radio frequency Sheaths |
title | Influence of radio frequency wave driving frequency on capacitively coupled plasma discharge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20radio%20frequency%20wave%20driving%20frequency%20on%20capacitively%20coupled%20plasma%20discharge&rft.jtitle=AIP%20advances&rft.au=Yang,%20Song&rft.date=2024-06-01&rft.volume=14&rft.issue=6&rft.spage=065104&rft.epage=065104-8&rft.pages=065104-065104-8&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0202071&rft_dat=%3Cproquest_cross%3E3064315964%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c283t-54f84286dac3c8f0efd4251397db9ffa12635d06e7dea03f3f727e418d42ee253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064315964&rft_id=info:pmid/&rfr_iscdi=true |