Loading…

Coarse Grained Molecular Dynamics with Normalizing Flows

We propose a sampling algorithm relying on a collective variable (CV) of mid-size dimension modelled by a normalizing flow and using non-equilibrium dynamics to propose full configurational moves from the proposition of a refreshed value of the CV made by the flow. The algorithm takes the form of a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-07
Main Authors: Tamagnone, Samuel, Laio, Alessandro, Gabrié, Marylou
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tamagnone, Samuel
Laio, Alessandro
Gabrié, Marylou
description We propose a sampling algorithm relying on a collective variable (CV) of mid-size dimension modelled by a normalizing flow and using non-equilibrium dynamics to propose full configurational moves from the proposition of a refreshed value of the CV made by the flow. The algorithm takes the form of a Markov chain with non-local updates, allowing jumps through energy barriers across metastable states. The flow is trained throughout the algorithm to reproduce the free energy landscape of the CV. The output of the algorithm are a sample of thermalized configurations and the trained network that can be used to efficiently produce more configurations. We show the functioning of the algorithm first on a test case with a mixture of Gaussians. Then we successfully test it on a higher dimensional system consisting in a polymer in solution with a compact and an extended stable state separated by a high free energy barrier.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3064385636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064385636</sourcerecordid><originalsourceid>FETCH-proquest_journals_30643856363</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScCzGvidmr1UUn9xLaqClponkNRb9eBz_A6Q7nzkjGATaFKjlfkByxZ4xxueVCQEZUFXREQw9RW286egrOtMnpSHcvrwfbIp3seKfnEAft7Nv6G61dmHBF5lft0OS_Lsm63l-qY_GI4ZkMjk0fUvRfaoDJEpSQIOG_6wM_LTYZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064385636</pqid></control><display><type>article</type><title>Coarse Grained Molecular Dynamics with Normalizing Flows</title><source>Publicly Available Content Database</source><creator>Tamagnone, Samuel ; Laio, Alessandro ; Gabrié, Marylou</creator><creatorcontrib>Tamagnone, Samuel ; Laio, Alessandro ; Gabrié, Marylou</creatorcontrib><description>We propose a sampling algorithm relying on a collective variable (CV) of mid-size dimension modelled by a normalizing flow and using non-equilibrium dynamics to propose full configurational moves from the proposition of a refreshed value of the CV made by the flow. The algorithm takes the form of a Markov chain with non-local updates, allowing jumps through energy barriers across metastable states. The flow is trained throughout the algorithm to reproduce the free energy landscape of the CV. The output of the algorithm are a sample of thermalized configurations and the trained network that can be used to efficiently produce more configurations. We show the functioning of the algorithm first on a test case with a mixture of Gaussians. Then we successfully test it on a higher dimensional system consisting in a polymer in solution with a compact and an extended stable state separated by a high free energy barrier.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Configurations ; Free energy ; Markov chains ; Metastable state ; Molecular dynamics</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3064385636?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25730,36988,44565</link.rule.ids></links><search><creatorcontrib>Tamagnone, Samuel</creatorcontrib><creatorcontrib>Laio, Alessandro</creatorcontrib><creatorcontrib>Gabrié, Marylou</creatorcontrib><title>Coarse Grained Molecular Dynamics with Normalizing Flows</title><title>arXiv.org</title><description>We propose a sampling algorithm relying on a collective variable (CV) of mid-size dimension modelled by a normalizing flow and using non-equilibrium dynamics to propose full configurational moves from the proposition of a refreshed value of the CV made by the flow. The algorithm takes the form of a Markov chain with non-local updates, allowing jumps through energy barriers across metastable states. The flow is trained throughout the algorithm to reproduce the free energy landscape of the CV. The output of the algorithm are a sample of thermalized configurations and the trained network that can be used to efficiently produce more configurations. We show the functioning of the algorithm first on a test case with a mixture of Gaussians. Then we successfully test it on a higher dimensional system consisting in a polymer in solution with a compact and an extended stable state separated by a high free energy barrier.</description><subject>Algorithms</subject><subject>Configurations</subject><subject>Free energy</subject><subject>Markov chains</subject><subject>Metastable state</subject><subject>Molecular dynamics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScCzGvidmr1UUn9xLaqClponkNRb9eBz_A6Q7nzkjGATaFKjlfkByxZ4xxueVCQEZUFXREQw9RW286egrOtMnpSHcvrwfbIp3seKfnEAft7Nv6G61dmHBF5lft0OS_Lsm63l-qY_GI4ZkMjk0fUvRfaoDJEpSQIOG_6wM_LTYZ</recordid><startdate>20240726</startdate><enddate>20240726</enddate><creator>Tamagnone, Samuel</creator><creator>Laio, Alessandro</creator><creator>Gabrié, Marylou</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240726</creationdate><title>Coarse Grained Molecular Dynamics with Normalizing Flows</title><author>Tamagnone, Samuel ; Laio, Alessandro ; Gabrié, Marylou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30643856363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Configurations</topic><topic>Free energy</topic><topic>Markov chains</topic><topic>Metastable state</topic><topic>Molecular dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Tamagnone, Samuel</creatorcontrib><creatorcontrib>Laio, Alessandro</creatorcontrib><creatorcontrib>Gabrié, Marylou</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamagnone, Samuel</au><au>Laio, Alessandro</au><au>Gabrié, Marylou</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Coarse Grained Molecular Dynamics with Normalizing Flows</atitle><jtitle>arXiv.org</jtitle><date>2024-07-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We propose a sampling algorithm relying on a collective variable (CV) of mid-size dimension modelled by a normalizing flow and using non-equilibrium dynamics to propose full configurational moves from the proposition of a refreshed value of the CV made by the flow. The algorithm takes the form of a Markov chain with non-local updates, allowing jumps through energy barriers across metastable states. The flow is trained throughout the algorithm to reproduce the free energy landscape of the CV. The output of the algorithm are a sample of thermalized configurations and the trained network that can be used to efficiently produce more configurations. We show the functioning of the algorithm first on a test case with a mixture of Gaussians. Then we successfully test it on a higher dimensional system consisting in a polymer in solution with a compact and an extended stable state separated by a high free energy barrier.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3064385636
source Publicly Available Content Database
subjects Algorithms
Configurations
Free energy
Markov chains
Metastable state
Molecular dynamics
title Coarse Grained Molecular Dynamics with Normalizing Flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Coarse%20Grained%20Molecular%20Dynamics%20with%20Normalizing%20Flows&rft.jtitle=arXiv.org&rft.au=Tamagnone,%20Samuel&rft.date=2024-07-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3064385636%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30643856363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064385636&rft_id=info:pmid/&rfr_iscdi=true