Loading…

Flow and transport parameter estimation of a confined aquifer using simulation–optimization model

In this study, the simulation–optimization (SO) model is used to identify the aquifer parameters (flow and transport parameters) of a confined aquifer. The unknown parameters are obtained by comparing the observed and the simulated values. The meshless local radial point interpolation method (LRPIM)...

Full description

Saved in:
Bibliographic Details
Published in:Modeling earth systems and environment 2024-06, Vol.10 (3), p.4013-4026
Main Authors: Swetha, K., Eldho, T. I., Singh, L. Guneshwor, Kumar, A. Vinod
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-aa61a88584c491c18b6f5885023d9ade6896148b04f0338d4e13f7d234d808853
container_end_page 4026
container_issue 3
container_start_page 4013
container_title Modeling earth systems and environment
container_volume 10
creator Swetha, K.
Eldho, T. I.
Singh, L. Guneshwor
Kumar, A. Vinod
description In this study, the simulation–optimization (SO) model is used to identify the aquifer parameters (flow and transport parameters) of a confined aquifer. The unknown parameters are obtained by comparing the observed and the simulated values. The meshless local radial point interpolation method (LRPIM) is used for the purpose of simulation of groundwater flow/contaminant transport. An optimization model is used to minimize the error between simulated and predetermined head/concentration values. Teaching Learning-Based Optimization (TLBO) is coupled with the LRPIM simulation model to get the SO model (LRPIM-TLBO). Further with Particle Swarm Optimization (PSO), the LRPIM-PSO model is also developed for comparison purpose. The proposed SO model is applied to a hypothetical and real field problem to estimate the aquifer parameters such as transmissivity, longitudinal and transverse dispersivity. The model performance is measured with RMS error. It is found that the RMS error is less than 7 and 10 for hypothetical and real field cases, showing the effectiveness of the SO models for parameter estimation.
doi_str_mv 10.1007/s40808-024-01989-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064391406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064391406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-aa61a88584c491c18b6f5885023d9ade6896148b04f0338d4e13f7d234d808853</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWLQv4CrgevTk0jRZSrEqFNzoOqSTpEyZJtNkBtGV7-Ab-iTGjujOVU7g-87lR-iCwBUBmF9nDhJkBZRXQJRUFT1CE8oEqwQl5Pi3BnaKpjlvAYAIKoRSE1Qv2_iCTbC4TybkLqYedyaZnetdwi73zc70TQw4emxwHYNvgrPY7IfGF2DITdjg3OyG9oB9vn_ErjjN22jtonXtOTrxps1u-vOeoefl7dPivlo93j0sblZVTefQV8YIYqScSV5zRWoi18LPyh8os8pYJ6QShMs1cA-MScsdYX5uKeO2nC9n7Axdjn27FPdD2V1v45BCGakZCM4U4SAKRUeqTjHn5LzuUjkyvWoC-jtPPeapS576kKemRWKjlAscNi79tf7H-gLv-nm9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064391406</pqid></control><display><type>article</type><title>Flow and transport parameter estimation of a confined aquifer using simulation–optimization model</title><source>Springer Nature</source><creator>Swetha, K. ; Eldho, T. I. ; Singh, L. Guneshwor ; Kumar, A. Vinod</creator><creatorcontrib>Swetha, K. ; Eldho, T. I. ; Singh, L. Guneshwor ; Kumar, A. Vinod</creatorcontrib><description>In this study, the simulation–optimization (SO) model is used to identify the aquifer parameters (flow and transport parameters) of a confined aquifer. The unknown parameters are obtained by comparing the observed and the simulated values. The meshless local radial point interpolation method (LRPIM) is used for the purpose of simulation of groundwater flow/contaminant transport. An optimization model is used to minimize the error between simulated and predetermined head/concentration values. Teaching Learning-Based Optimization (TLBO) is coupled with the LRPIM simulation model to get the SO model (LRPIM-TLBO). Further with Particle Swarm Optimization (PSO), the LRPIM-PSO model is also developed for comparison purpose. The proposed SO model is applied to a hypothetical and real field problem to estimate the aquifer parameters such as transmissivity, longitudinal and transverse dispersivity. The model performance is measured with RMS error. It is found that the RMS error is less than 7 and 10 for hypothetical and real field cases, showing the effectiveness of the SO models for parameter estimation.</description><identifier>ISSN: 2363-6203</identifier><identifier>EISSN: 2363-6211</identifier><identifier>DOI: 10.1007/s40808-024-01989-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aquifers ; Chemistry and Earth Sciences ; Computer Science ; Confined aquifers ; Contaminants ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Ecosystems ; Environment ; Error analysis ; Groundwater ; Groundwater flow ; Math. Appl. in Environmental Science ; Mathematical Applications in the Physical Sciences ; Optimization ; Optimization models ; Original Article ; Parameter estimation ; Parameter identification ; Parameters ; Particle swarm optimization ; Physics ; Pollution transport ; Simulation ; Simulation models ; Statistics for Engineering ; Transmissivity</subject><ispartof>Modeling earth systems and environment, 2024-06, Vol.10 (3), p.4013-4026</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-aa61a88584c491c18b6f5885023d9ade6896148b04f0338d4e13f7d234d808853</cites><orcidid>0000-0003-4883-3792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Swetha, K.</creatorcontrib><creatorcontrib>Eldho, T. I.</creatorcontrib><creatorcontrib>Singh, L. Guneshwor</creatorcontrib><creatorcontrib>Kumar, A. Vinod</creatorcontrib><title>Flow and transport parameter estimation of a confined aquifer using simulation–optimization model</title><title>Modeling earth systems and environment</title><addtitle>Model. Earth Syst. Environ</addtitle><description>In this study, the simulation–optimization (SO) model is used to identify the aquifer parameters (flow and transport parameters) of a confined aquifer. The unknown parameters are obtained by comparing the observed and the simulated values. The meshless local radial point interpolation method (LRPIM) is used for the purpose of simulation of groundwater flow/contaminant transport. An optimization model is used to minimize the error between simulated and predetermined head/concentration values. Teaching Learning-Based Optimization (TLBO) is coupled with the LRPIM simulation model to get the SO model (LRPIM-TLBO). Further with Particle Swarm Optimization (PSO), the LRPIM-PSO model is also developed for comparison purpose. The proposed SO model is applied to a hypothetical and real field problem to estimate the aquifer parameters such as transmissivity, longitudinal and transverse dispersivity. The model performance is measured with RMS error. It is found that the RMS error is less than 7 and 10 for hypothetical and real field cases, showing the effectiveness of the SO models for parameter estimation.</description><subject>Aquifers</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Confined aquifers</subject><subject>Contaminants</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Error analysis</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Physics</subject><subject>Pollution transport</subject><subject>Simulation</subject><subject>Simulation models</subject><subject>Statistics for Engineering</subject><subject>Transmissivity</subject><issn>2363-6203</issn><issn>2363-6211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWLQv4CrgevTk0jRZSrEqFNzoOqSTpEyZJtNkBtGV7-Ab-iTGjujOVU7g-87lR-iCwBUBmF9nDhJkBZRXQJRUFT1CE8oEqwQl5Pi3BnaKpjlvAYAIKoRSE1Qv2_iCTbC4TybkLqYedyaZnetdwi73zc70TQw4emxwHYNvgrPY7IfGF2DITdjg3OyG9oB9vn_ErjjN22jtonXtOTrxps1u-vOeoefl7dPivlo93j0sblZVTefQV8YIYqScSV5zRWoi18LPyh8os8pYJ6QShMs1cA-MScsdYX5uKeO2nC9n7Axdjn27FPdD2V1v45BCGakZCM4U4SAKRUeqTjHn5LzuUjkyvWoC-jtPPeapS576kKemRWKjlAscNi79tf7H-gLv-nm9</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Swetha, K.</creator><creator>Eldho, T. I.</creator><creator>Singh, L. Guneshwor</creator><creator>Kumar, A. Vinod</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-4883-3792</orcidid></search><sort><creationdate>20240601</creationdate><title>Flow and transport parameter estimation of a confined aquifer using simulation–optimization model</title><author>Swetha, K. ; Eldho, T. I. ; Singh, L. Guneshwor ; Kumar, A. Vinod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-aa61a88584c491c18b6f5885023d9ade6896148b04f0338d4e13f7d234d808853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquifers</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Confined aquifers</topic><topic>Contaminants</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Error analysis</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Physics</topic><topic>Pollution transport</topic><topic>Simulation</topic><topic>Simulation models</topic><topic>Statistics for Engineering</topic><topic>Transmissivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swetha, K.</creatorcontrib><creatorcontrib>Eldho, T. I.</creatorcontrib><creatorcontrib>Singh, L. Guneshwor</creatorcontrib><creatorcontrib>Kumar, A. Vinod</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Modeling earth systems and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swetha, K.</au><au>Eldho, T. I.</au><au>Singh, L. Guneshwor</au><au>Kumar, A. Vinod</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow and transport parameter estimation of a confined aquifer using simulation–optimization model</atitle><jtitle>Modeling earth systems and environment</jtitle><stitle>Model. Earth Syst. Environ</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>10</volume><issue>3</issue><spage>4013</spage><epage>4026</epage><pages>4013-4026</pages><issn>2363-6203</issn><eissn>2363-6211</eissn><abstract>In this study, the simulation–optimization (SO) model is used to identify the aquifer parameters (flow and transport parameters) of a confined aquifer. The unknown parameters are obtained by comparing the observed and the simulated values. The meshless local radial point interpolation method (LRPIM) is used for the purpose of simulation of groundwater flow/contaminant transport. An optimization model is used to minimize the error between simulated and predetermined head/concentration values. Teaching Learning-Based Optimization (TLBO) is coupled with the LRPIM simulation model to get the SO model (LRPIM-TLBO). Further with Particle Swarm Optimization (PSO), the LRPIM-PSO model is also developed for comparison purpose. The proposed SO model is applied to a hypothetical and real field problem to estimate the aquifer parameters such as transmissivity, longitudinal and transverse dispersivity. The model performance is measured with RMS error. It is found that the RMS error is less than 7 and 10 for hypothetical and real field cases, showing the effectiveness of the SO models for parameter estimation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40808-024-01989-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4883-3792</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2363-6203
ispartof Modeling earth systems and environment, 2024-06, Vol.10 (3), p.4013-4026
issn 2363-6203
2363-6211
language eng
recordid cdi_proquest_journals_3064391406
source Springer Nature
subjects Aquifers
Chemistry and Earth Sciences
Computer Science
Confined aquifers
Contaminants
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Ecosystems
Environment
Error analysis
Groundwater
Groundwater flow
Math. Appl. in Environmental Science
Mathematical Applications in the Physical Sciences
Optimization
Optimization models
Original Article
Parameter estimation
Parameter identification
Parameters
Particle swarm optimization
Physics
Pollution transport
Simulation
Simulation models
Statistics for Engineering
Transmissivity
title Flow and transport parameter estimation of a confined aquifer using simulation–optimization model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20and%20transport%20parameter%20estimation%20of%20a%20confined%20aquifer%20using%20simulation%E2%80%93optimization%20model&rft.jtitle=Modeling%20earth%20systems%20and%20environment&rft.au=Swetha,%20K.&rft.date=2024-06-01&rft.volume=10&rft.issue=3&rft.spage=4013&rft.epage=4026&rft.pages=4013-4026&rft.issn=2363-6203&rft.eissn=2363-6211&rft_id=info:doi/10.1007/s40808-024-01989-2&rft_dat=%3Cproquest_cross%3E3064391406%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-aa61a88584c491c18b6f5885023d9ade6896148b04f0338d4e13f7d234d808853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064391406&rft_id=info:pmid/&rfr_iscdi=true