Loading…
Flow and transport parameter estimation of a confined aquifer using simulation–optimization model
In this study, the simulation–optimization (SO) model is used to identify the aquifer parameters (flow and transport parameters) of a confined aquifer. The unknown parameters are obtained by comparing the observed and the simulated values. The meshless local radial point interpolation method (LRPIM)...
Saved in:
Published in: | Modeling earth systems and environment 2024-06, Vol.10 (3), p.4013-4026 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-aa61a88584c491c18b6f5885023d9ade6896148b04f0338d4e13f7d234d808853 |
container_end_page | 4026 |
container_issue | 3 |
container_start_page | 4013 |
container_title | Modeling earth systems and environment |
container_volume | 10 |
creator | Swetha, K. Eldho, T. I. Singh, L. Guneshwor Kumar, A. Vinod |
description | In this study, the simulation–optimization (SO) model is used to identify the aquifer parameters (flow and transport parameters) of a confined aquifer. The unknown parameters are obtained by comparing the observed and the simulated values. The meshless local radial point interpolation method (LRPIM) is used for the purpose of simulation of groundwater flow/contaminant transport. An optimization model is used to minimize the error between simulated and predetermined head/concentration values. Teaching Learning-Based Optimization (TLBO) is coupled with the LRPIM simulation model to get the SO model (LRPIM-TLBO). Further with Particle Swarm Optimization (PSO), the LRPIM-PSO model is also developed for comparison purpose. The proposed SO model is applied to a hypothetical and real field problem to estimate the aquifer parameters such as transmissivity, longitudinal and transverse dispersivity. The model performance is measured with RMS error. It is found that the RMS error is less than 7 and 10 for hypothetical and real field cases, showing the effectiveness of the SO models for parameter estimation. |
doi_str_mv | 10.1007/s40808-024-01989-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064391406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064391406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-aa61a88584c491c18b6f5885023d9ade6896148b04f0338d4e13f7d234d808853</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWLQv4CrgevTk0jRZSrEqFNzoOqSTpEyZJtNkBtGV7-Ab-iTGjujOVU7g-87lR-iCwBUBmF9nDhJkBZRXQJRUFT1CE8oEqwQl5Pi3BnaKpjlvAYAIKoRSE1Qv2_iCTbC4TybkLqYedyaZnetdwi73zc70TQw4emxwHYNvgrPY7IfGF2DITdjg3OyG9oB9vn_ErjjN22jtonXtOTrxps1u-vOeoefl7dPivlo93j0sblZVTefQV8YIYqScSV5zRWoi18LPyh8os8pYJ6QShMs1cA-MScsdYX5uKeO2nC9n7Axdjn27FPdD2V1v45BCGakZCM4U4SAKRUeqTjHn5LzuUjkyvWoC-jtPPeapS576kKemRWKjlAscNi79tf7H-gLv-nm9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064391406</pqid></control><display><type>article</type><title>Flow and transport parameter estimation of a confined aquifer using simulation–optimization model</title><source>Springer Nature</source><creator>Swetha, K. ; Eldho, T. I. ; Singh, L. Guneshwor ; Kumar, A. Vinod</creator><creatorcontrib>Swetha, K. ; Eldho, T. I. ; Singh, L. Guneshwor ; Kumar, A. Vinod</creatorcontrib><description>In this study, the simulation–optimization (SO) model is used to identify the aquifer parameters (flow and transport parameters) of a confined aquifer. The unknown parameters are obtained by comparing the observed and the simulated values. The meshless local radial point interpolation method (LRPIM) is used for the purpose of simulation of groundwater flow/contaminant transport. An optimization model is used to minimize the error between simulated and predetermined head/concentration values. Teaching Learning-Based Optimization (TLBO) is coupled with the LRPIM simulation model to get the SO model (LRPIM-TLBO). Further with Particle Swarm Optimization (PSO), the LRPIM-PSO model is also developed for comparison purpose. The proposed SO model is applied to a hypothetical and real field problem to estimate the aquifer parameters such as transmissivity, longitudinal and transverse dispersivity. The model performance is measured with RMS error. It is found that the RMS error is less than 7 and 10 for hypothetical and real field cases, showing the effectiveness of the SO models for parameter estimation.</description><identifier>ISSN: 2363-6203</identifier><identifier>EISSN: 2363-6211</identifier><identifier>DOI: 10.1007/s40808-024-01989-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aquifers ; Chemistry and Earth Sciences ; Computer Science ; Confined aquifers ; Contaminants ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Ecosystems ; Environment ; Error analysis ; Groundwater ; Groundwater flow ; Math. Appl. in Environmental Science ; Mathematical Applications in the Physical Sciences ; Optimization ; Optimization models ; Original Article ; Parameter estimation ; Parameter identification ; Parameters ; Particle swarm optimization ; Physics ; Pollution transport ; Simulation ; Simulation models ; Statistics for Engineering ; Transmissivity</subject><ispartof>Modeling earth systems and environment, 2024-06, Vol.10 (3), p.4013-4026</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-aa61a88584c491c18b6f5885023d9ade6896148b04f0338d4e13f7d234d808853</cites><orcidid>0000-0003-4883-3792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Swetha, K.</creatorcontrib><creatorcontrib>Eldho, T. I.</creatorcontrib><creatorcontrib>Singh, L. Guneshwor</creatorcontrib><creatorcontrib>Kumar, A. Vinod</creatorcontrib><title>Flow and transport parameter estimation of a confined aquifer using simulation–optimization model</title><title>Modeling earth systems and environment</title><addtitle>Model. Earth Syst. Environ</addtitle><description>In this study, the simulation–optimization (SO) model is used to identify the aquifer parameters (flow and transport parameters) of a confined aquifer. The unknown parameters are obtained by comparing the observed and the simulated values. The meshless local radial point interpolation method (LRPIM) is used for the purpose of simulation of groundwater flow/contaminant transport. An optimization model is used to minimize the error between simulated and predetermined head/concentration values. Teaching Learning-Based Optimization (TLBO) is coupled with the LRPIM simulation model to get the SO model (LRPIM-TLBO). Further with Particle Swarm Optimization (PSO), the LRPIM-PSO model is also developed for comparison purpose. The proposed SO model is applied to a hypothetical and real field problem to estimate the aquifer parameters such as transmissivity, longitudinal and transverse dispersivity. The model performance is measured with RMS error. It is found that the RMS error is less than 7 and 10 for hypothetical and real field cases, showing the effectiveness of the SO models for parameter estimation.</description><subject>Aquifers</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Confined aquifers</subject><subject>Contaminants</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Error analysis</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Physics</subject><subject>Pollution transport</subject><subject>Simulation</subject><subject>Simulation models</subject><subject>Statistics for Engineering</subject><subject>Transmissivity</subject><issn>2363-6203</issn><issn>2363-6211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWLQv4CrgevTk0jRZSrEqFNzoOqSTpEyZJtNkBtGV7-Ab-iTGjujOVU7g-87lR-iCwBUBmF9nDhJkBZRXQJRUFT1CE8oEqwQl5Pi3BnaKpjlvAYAIKoRSE1Qv2_iCTbC4TybkLqYedyaZnetdwi73zc70TQw4emxwHYNvgrPY7IfGF2DITdjg3OyG9oB9vn_ErjjN22jtonXtOTrxps1u-vOeoefl7dPivlo93j0sblZVTefQV8YIYqScSV5zRWoi18LPyh8os8pYJ6QShMs1cA-MScsdYX5uKeO2nC9n7Axdjn27FPdD2V1v45BCGakZCM4U4SAKRUeqTjHn5LzuUjkyvWoC-jtPPeapS576kKemRWKjlAscNi79tf7H-gLv-nm9</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Swetha, K.</creator><creator>Eldho, T. I.</creator><creator>Singh, L. Guneshwor</creator><creator>Kumar, A. Vinod</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-4883-3792</orcidid></search><sort><creationdate>20240601</creationdate><title>Flow and transport parameter estimation of a confined aquifer using simulation–optimization model</title><author>Swetha, K. ; Eldho, T. I. ; Singh, L. Guneshwor ; Kumar, A. Vinod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-aa61a88584c491c18b6f5885023d9ade6896148b04f0338d4e13f7d234d808853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquifers</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Confined aquifers</topic><topic>Contaminants</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Error analysis</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Physics</topic><topic>Pollution transport</topic><topic>Simulation</topic><topic>Simulation models</topic><topic>Statistics for Engineering</topic><topic>Transmissivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swetha, K.</creatorcontrib><creatorcontrib>Eldho, T. I.</creatorcontrib><creatorcontrib>Singh, L. Guneshwor</creatorcontrib><creatorcontrib>Kumar, A. Vinod</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Modeling earth systems and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swetha, K.</au><au>Eldho, T. I.</au><au>Singh, L. Guneshwor</au><au>Kumar, A. Vinod</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow and transport parameter estimation of a confined aquifer using simulation–optimization model</atitle><jtitle>Modeling earth systems and environment</jtitle><stitle>Model. Earth Syst. Environ</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>10</volume><issue>3</issue><spage>4013</spage><epage>4026</epage><pages>4013-4026</pages><issn>2363-6203</issn><eissn>2363-6211</eissn><abstract>In this study, the simulation–optimization (SO) model is used to identify the aquifer parameters (flow and transport parameters) of a confined aquifer. The unknown parameters are obtained by comparing the observed and the simulated values. The meshless local radial point interpolation method (LRPIM) is used for the purpose of simulation of groundwater flow/contaminant transport. An optimization model is used to minimize the error between simulated and predetermined head/concentration values. Teaching Learning-Based Optimization (TLBO) is coupled with the LRPIM simulation model to get the SO model (LRPIM-TLBO). Further with Particle Swarm Optimization (PSO), the LRPIM-PSO model is also developed for comparison purpose. The proposed SO model is applied to a hypothetical and real field problem to estimate the aquifer parameters such as transmissivity, longitudinal and transverse dispersivity. The model performance is measured with RMS error. It is found that the RMS error is less than 7 and 10 for hypothetical and real field cases, showing the effectiveness of the SO models for parameter estimation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40808-024-01989-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4883-3792</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2363-6203 |
ispartof | Modeling earth systems and environment, 2024-06, Vol.10 (3), p.4013-4026 |
issn | 2363-6203 2363-6211 |
language | eng |
recordid | cdi_proquest_journals_3064391406 |
source | Springer Nature |
subjects | Aquifers Chemistry and Earth Sciences Computer Science Confined aquifers Contaminants Earth and Environmental Science Earth Sciences Earth System Sciences Ecosystems Environment Error analysis Groundwater Groundwater flow Math. Appl. in Environmental Science Mathematical Applications in the Physical Sciences Optimization Optimization models Original Article Parameter estimation Parameter identification Parameters Particle swarm optimization Physics Pollution transport Simulation Simulation models Statistics for Engineering Transmissivity |
title | Flow and transport parameter estimation of a confined aquifer using simulation–optimization model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20and%20transport%20parameter%20estimation%20of%20a%20confined%20aquifer%20using%20simulation%E2%80%93optimization%20model&rft.jtitle=Modeling%20earth%20systems%20and%20environment&rft.au=Swetha,%20K.&rft.date=2024-06-01&rft.volume=10&rft.issue=3&rft.spage=4013&rft.epage=4026&rft.pages=4013-4026&rft.issn=2363-6203&rft.eissn=2363-6211&rft_id=info:doi/10.1007/s40808-024-01989-2&rft_dat=%3Cproquest_cross%3E3064391406%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-aa61a88584c491c18b6f5885023d9ade6896148b04f0338d4e13f7d234d808853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064391406&rft_id=info:pmid/&rfr_iscdi=true |