Loading…
Modulating charge separation and transfer for high-performance photoelectrodes via built-in electric field
Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer, thereby improving photoelectrochemical performance. Recently, considerable efforts have been devoted to this endeavor. This review systematically summarizes the impact of built-in elect...
Saved in:
Published in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2024-05, Vol.31 (5), p.1126-1146 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer, thereby improving photoelectrochemical performance. Recently, considerable efforts have been devoted to this endeavor. This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms, focusing on the modulation of built-in electric fields in terms of depth and orderliness. First, mechanisms and tuning strategies for built-in electric fields are explored. Then, the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth. Finally, current strategies for constructing bulk built-in electric fields in photoelectrodes are explored, and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided. |
---|---|
ISSN: | 1674-4799 1869-103X |
DOI: | 10.1007/s12613-024-2862-3 |