Loading…

Development of Similarity Measures From Graph-Structured Bibliographic Metadata: An Application to Identify Scientific Convergence

Scientific convergence is a phenomenon where the distance between hitherto distinct scientific fields narrows and the fields gradually overlap over time. It is creating important potential for research, development, and innovation. Although scientific convergence is crucial for the development of ra...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on engineering management 2024, Vol.71, p.9171-9187
Main Authors: Melnychuk, Tetyana, Galke, Lukas, Seidlmayer, Eva, Broring, Stefanie, Forstner, Konrad U., Tochtermann, Klaus, Schultz, Carsten
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9187
container_issue
container_start_page 9171
container_title IEEE transactions on engineering management
container_volume 71
creator Melnychuk, Tetyana
Galke, Lukas
Seidlmayer, Eva
Broring, Stefanie
Forstner, Konrad U.
Tochtermann, Klaus
Schultz, Carsten
description Scientific convergence is a phenomenon where the distance between hitherto distinct scientific fields narrows and the fields gradually overlap over time. It is creating important potential for research, development, and innovation. Although scientific convergence is crucial for the development of radically new technology, the identification of emerging scientific convergence is particularly difficult since the underlying knowledge flows are rather fuzzy and unstable in the early convergence stage. Nevertheless, novel scientific publications emerging at the intersection of different knowledge fields may reflect convergence processes. Thus, in this article, we exploit the growing number of research and digital libraries providing bibliographic metadata to propose an automated analysis of science dynamics. We utilize and adapt machine-learning methods (DeepWalk) to automatically learn a similarity measure between scientific fields from graphs constructed on bibliographic metadata. With a time-based perspective, we apply our approach to analyze the trajectories of evolving similarities between scientific fields. We validate the learned similarity measure by evaluating it within the well-explored case of cholesterol-lowering ingredients in which scientific convergence between the distinct scientific fields of nutrition and pharmaceuticals has partially taken place. Our results confirm that the similarity trajectories learned by our approach resemble the expected behavior, indicating that our approach may allow researchers and practitioners to detect and predict scientific convergence early.
doi_str_mv 10.1109/TEM.2023.3308008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064703137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10248955</ieee_id><sourcerecordid>3064703137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-1473e6b13b0749b202a910cb844c73ccb272f347faad948e1a932dc126ed6df43</originalsourceid><addsrcrecordid>eNpNkM1PwkAQxTdGExG9e_Cwiefi7Edp6w0RlATiATw32-0Ul5Ru3S4kXP3LXYSDp5l5-b2ZzCPknsGAMcieVpPFgAMXAyEgBUgvSI_FcRoBSLgkPQCWRpnI2DW56bpNGGXMoUd-XnGPtW232HhqK7o0W1MrZ_yBLlB1O4cdnTq7pW9OtV_R0rud9kEt6YspamPXR9noAHtVKq-e6aiho7atjVbe2IZ6S2dlWG6qA11q89cFfmybPbo1NhpvyVWl6g7vzrVPPqeT1fg9mn-8zcajeaR5mviIyUTgsGCigERmRfhVZQx0kUqpE6F1wRNeCZlUSpWZTJGpTPBSMz7EclhWUvTJ42lv6-z3Djufb-zONeFkLmAoExBMJIGCE6Wd7TqHVd46s1XukDPIj0nnIen8mHR-TjpYHk4Wg4j_cC7TLI7FLxO-e6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064703137</pqid></control><display><type>article</type><title>Development of Similarity Measures From Graph-Structured Bibliographic Metadata: An Application to Identify Scientific Convergence</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Melnychuk, Tetyana ; Galke, Lukas ; Seidlmayer, Eva ; Broring, Stefanie ; Forstner, Konrad U. ; Tochtermann, Klaus ; Schultz, Carsten</creator><creatorcontrib>Melnychuk, Tetyana ; Galke, Lukas ; Seidlmayer, Eva ; Broring, Stefanie ; Forstner, Konrad U. ; Tochtermann, Klaus ; Schultz, Carsten</creatorcontrib><description>Scientific convergence is a phenomenon where the distance between hitherto distinct scientific fields narrows and the fields gradually overlap over time. It is creating important potential for research, development, and innovation. Although scientific convergence is crucial for the development of radically new technology, the identification of emerging scientific convergence is particularly difficult since the underlying knowledge flows are rather fuzzy and unstable in the early convergence stage. Nevertheless, novel scientific publications emerging at the intersection of different knowledge fields may reflect convergence processes. Thus, in this article, we exploit the growing number of research and digital libraries providing bibliographic metadata to propose an automated analysis of science dynamics. We utilize and adapt machine-learning methods (DeepWalk) to automatically learn a similarity measure between scientific fields from graphs constructed on bibliographic metadata. With a time-based perspective, we apply our approach to analyze the trajectories of evolving similarities between scientific fields. We validate the learned similarity measure by evaluating it within the well-explored case of cholesterol-lowering ingredients in which scientific convergence between the distinct scientific fields of nutrition and pharmaceuticals has partially taken place. Our results confirm that the similarity trajectories learned by our approach resemble the expected behavior, indicating that our approach may allow researchers and practitioners to detect and predict scientific convergence early.</description><identifier>ISSN: 0018-9391</identifier><identifier>EISSN: 1558-0040</identifier><identifier>DOI: 10.1109/TEM.2023.3308008</identifier><identifier>CODEN: IEEMA4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bibliographies ; Companies ; Convergence ; Data enrichment ; Industries ; Machine learning ; Merging ; Metadata ; network analysis ; R&amp;D ; Research &amp; development ; Research and development ; science dynamics ; scientific convergence ; Similarity ; similarity indicator ; Similarity measures ; Trajectory ; Trajectory analysis</subject><ispartof>IEEE transactions on engineering management, 2024, Vol.71, p.9171-9187</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7258-0532 ; 0000-0002-7258-2842 ; 0000-0003-2471-2697 ; 0000-0002-5984-9872 ; 0000-0002-1481-2996 ; 0000-0003-2014-2586 ; 0000-0001-6124-1092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10248955$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4021,27921,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Melnychuk, Tetyana</creatorcontrib><creatorcontrib>Galke, Lukas</creatorcontrib><creatorcontrib>Seidlmayer, Eva</creatorcontrib><creatorcontrib>Broring, Stefanie</creatorcontrib><creatorcontrib>Forstner, Konrad U.</creatorcontrib><creatorcontrib>Tochtermann, Klaus</creatorcontrib><creatorcontrib>Schultz, Carsten</creatorcontrib><title>Development of Similarity Measures From Graph-Structured Bibliographic Metadata: An Application to Identify Scientific Convergence</title><title>IEEE transactions on engineering management</title><addtitle>TEM</addtitle><description>Scientific convergence is a phenomenon where the distance between hitherto distinct scientific fields narrows and the fields gradually overlap over time. It is creating important potential for research, development, and innovation. Although scientific convergence is crucial for the development of radically new technology, the identification of emerging scientific convergence is particularly difficult since the underlying knowledge flows are rather fuzzy and unstable in the early convergence stage. Nevertheless, novel scientific publications emerging at the intersection of different knowledge fields may reflect convergence processes. Thus, in this article, we exploit the growing number of research and digital libraries providing bibliographic metadata to propose an automated analysis of science dynamics. We utilize and adapt machine-learning methods (DeepWalk) to automatically learn a similarity measure between scientific fields from graphs constructed on bibliographic metadata. With a time-based perspective, we apply our approach to analyze the trajectories of evolving similarities between scientific fields. We validate the learned similarity measure by evaluating it within the well-explored case of cholesterol-lowering ingredients in which scientific convergence between the distinct scientific fields of nutrition and pharmaceuticals has partially taken place. Our results confirm that the similarity trajectories learned by our approach resemble the expected behavior, indicating that our approach may allow researchers and practitioners to detect and predict scientific convergence early.</description><subject>Bibliographies</subject><subject>Companies</subject><subject>Convergence</subject><subject>Data enrichment</subject><subject>Industries</subject><subject>Machine learning</subject><subject>Merging</subject><subject>Metadata</subject><subject>network analysis</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Research and development</subject><subject>science dynamics</subject><subject>scientific convergence</subject><subject>Similarity</subject><subject>similarity indicator</subject><subject>Similarity measures</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><issn>0018-9391</issn><issn>1558-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkM1PwkAQxTdGExG9e_Cwiefi7Edp6w0RlATiATw32-0Ul5Ru3S4kXP3LXYSDp5l5-b2ZzCPknsGAMcieVpPFgAMXAyEgBUgvSI_FcRoBSLgkPQCWRpnI2DW56bpNGGXMoUd-XnGPtW232HhqK7o0W1MrZ_yBLlB1O4cdnTq7pW9OtV_R0rud9kEt6YspamPXR9noAHtVKq-e6aiho7atjVbe2IZ6S2dlWG6qA11q89cFfmybPbo1NhpvyVWl6g7vzrVPPqeT1fg9mn-8zcajeaR5mviIyUTgsGCigERmRfhVZQx0kUqpE6F1wRNeCZlUSpWZTJGpTPBSMz7EclhWUvTJ42lv6-z3Djufb-zONeFkLmAoExBMJIGCE6Wd7TqHVd46s1XukDPIj0nnIen8mHR-TjpYHk4Wg4j_cC7TLI7FLxO-e6w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Melnychuk, Tetyana</creator><creator>Galke, Lukas</creator><creator>Seidlmayer, Eva</creator><creator>Broring, Stefanie</creator><creator>Forstner, Konrad U.</creator><creator>Tochtermann, Klaus</creator><creator>Schultz, Carsten</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7258-0532</orcidid><orcidid>https://orcid.org/0000-0002-7258-2842</orcidid><orcidid>https://orcid.org/0000-0003-2471-2697</orcidid><orcidid>https://orcid.org/0000-0002-5984-9872</orcidid><orcidid>https://orcid.org/0000-0002-1481-2996</orcidid><orcidid>https://orcid.org/0000-0003-2014-2586</orcidid><orcidid>https://orcid.org/0000-0001-6124-1092</orcidid></search><sort><creationdate>2024</creationdate><title>Development of Similarity Measures From Graph-Structured Bibliographic Metadata: An Application to Identify Scientific Convergence</title><author>Melnychuk, Tetyana ; Galke, Lukas ; Seidlmayer, Eva ; Broring, Stefanie ; Forstner, Konrad U. ; Tochtermann, Klaus ; Schultz, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-1473e6b13b0749b202a910cb844c73ccb272f347faad948e1a932dc126ed6df43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bibliographies</topic><topic>Companies</topic><topic>Convergence</topic><topic>Data enrichment</topic><topic>Industries</topic><topic>Machine learning</topic><topic>Merging</topic><topic>Metadata</topic><topic>network analysis</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Research and development</topic><topic>science dynamics</topic><topic>scientific convergence</topic><topic>Similarity</topic><topic>similarity indicator</topic><topic>Similarity measures</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melnychuk, Tetyana</creatorcontrib><creatorcontrib>Galke, Lukas</creatorcontrib><creatorcontrib>Seidlmayer, Eva</creatorcontrib><creatorcontrib>Broring, Stefanie</creatorcontrib><creatorcontrib>Forstner, Konrad U.</creatorcontrib><creatorcontrib>Tochtermann, Klaus</creatorcontrib><creatorcontrib>Schultz, Carsten</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on engineering management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melnychuk, Tetyana</au><au>Galke, Lukas</au><au>Seidlmayer, Eva</au><au>Broring, Stefanie</au><au>Forstner, Konrad U.</au><au>Tochtermann, Klaus</au><au>Schultz, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Similarity Measures From Graph-Structured Bibliographic Metadata: An Application to Identify Scientific Convergence</atitle><jtitle>IEEE transactions on engineering management</jtitle><stitle>TEM</stitle><date>2024</date><risdate>2024</risdate><volume>71</volume><spage>9171</spage><epage>9187</epage><pages>9171-9187</pages><issn>0018-9391</issn><eissn>1558-0040</eissn><coden>IEEMA4</coden><abstract>Scientific convergence is a phenomenon where the distance between hitherto distinct scientific fields narrows and the fields gradually overlap over time. It is creating important potential for research, development, and innovation. Although scientific convergence is crucial for the development of radically new technology, the identification of emerging scientific convergence is particularly difficult since the underlying knowledge flows are rather fuzzy and unstable in the early convergence stage. Nevertheless, novel scientific publications emerging at the intersection of different knowledge fields may reflect convergence processes. Thus, in this article, we exploit the growing number of research and digital libraries providing bibliographic metadata to propose an automated analysis of science dynamics. We utilize and adapt machine-learning methods (DeepWalk) to automatically learn a similarity measure between scientific fields from graphs constructed on bibliographic metadata. With a time-based perspective, we apply our approach to analyze the trajectories of evolving similarities between scientific fields. We validate the learned similarity measure by evaluating it within the well-explored case of cholesterol-lowering ingredients in which scientific convergence between the distinct scientific fields of nutrition and pharmaceuticals has partially taken place. Our results confirm that the similarity trajectories learned by our approach resemble the expected behavior, indicating that our approach may allow researchers and practitioners to detect and predict scientific convergence early.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEM.2023.3308008</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7258-0532</orcidid><orcidid>https://orcid.org/0000-0002-7258-2842</orcidid><orcidid>https://orcid.org/0000-0003-2471-2697</orcidid><orcidid>https://orcid.org/0000-0002-5984-9872</orcidid><orcidid>https://orcid.org/0000-0002-1481-2996</orcidid><orcidid>https://orcid.org/0000-0003-2014-2586</orcidid><orcidid>https://orcid.org/0000-0001-6124-1092</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9391
ispartof IEEE transactions on engineering management, 2024, Vol.71, p.9171-9187
issn 0018-9391
1558-0040
language eng
recordid cdi_proquest_journals_3064703137
source IEEE Electronic Library (IEL) Journals
subjects Bibliographies
Companies
Convergence
Data enrichment
Industries
Machine learning
Merging
Metadata
network analysis
R&D
Research & development
Research and development
science dynamics
scientific convergence
Similarity
similarity indicator
Similarity measures
Trajectory
Trajectory analysis
title Development of Similarity Measures From Graph-Structured Bibliographic Metadata: An Application to Identify Scientific Convergence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Similarity%20Measures%20From%20Graph-Structured%20Bibliographic%20Metadata:%20An%20Application%20to%20Identify%20Scientific%20Convergence&rft.jtitle=IEEE%20transactions%20on%20engineering%20management&rft.au=Melnychuk,%20Tetyana&rft.date=2024&rft.volume=71&rft.spage=9171&rft.epage=9187&rft.pages=9171-9187&rft.issn=0018-9391&rft.eissn=1558-0040&rft.coden=IEEMA4&rft_id=info:doi/10.1109/TEM.2023.3308008&rft_dat=%3Cproquest_cross%3E3064703137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-1473e6b13b0749b202a910cb844c73ccb272f347faad948e1a932dc126ed6df43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064703137&rft_id=info:pmid/&rft_ieee_id=10248955&rfr_iscdi=true