Loading…

Dual Natural Switching Surface Control for Multilevel Noninverting Buck-Boost Converter With Pulsed Power Loads

Pulsed power loads (PPLs) have the requirements of fast dynamic and high-power ratings, which may cause periodic power oscillations in traditional dc microgrid systems. Therefore, an improved dual natural switching surface (DNSS) boundary control law is proposed for multilevel noninverting buck-boos...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2024-09, Vol.71 (9), p.10444-10454
Main Authors: Lin, Liheng, Zhu, Zhen, Liu, Yang, Li, Zongjian, Wang, Lei, Ma, Fujun, He, Zhixing
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10454
container_issue 9
container_start_page 10444
container_title IEEE transactions on industrial electronics (1982)
container_volume 71
creator Lin, Liheng
Zhu, Zhen
Liu, Yang
Li, Zongjian
Wang, Lei
Ma, Fujun
He, Zhixing
description Pulsed power loads (PPLs) have the requirements of fast dynamic and high-power ratings, which may cause periodic power oscillations in traditional dc microgrid systems. Therefore, an improved dual natural switching surface (DNSS) boundary control law is proposed for multilevel noninverting buck-boost converter to dynamically synchronize the periodic power of PPLs within the minimum switching cycle by deriving and tracking the controlled trajectories. First, the variable structure model is established to derive the natural switching surfaces. Then, a graphical characteristic analysis of the transient switching trajectory is presented for the derivation of DNSSs, which can be divided into the primary and the secondary switching. Also, the control strategy based on DNSS is proposed. Due to the super dynamic performance of boundary control and the load characteristic of PPLs, the inductor current may be over the maximum permissible current, and online over-current protection is designed to achieve fast dynamic performance by limiting the inductor current. Finally, simulations and experiments are given to verify the proposed control law. The results show the proposed method has great dynamic performance for PPLs.
doi_str_mv 10.1109/TIE.2023.3331163
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064712958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10329460</ieee_id><sourcerecordid>3064712958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-2cddd5d4a6155dcfb64dce10d820b851d8370e64836d0ea74ef88b29bf63b50f3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBEYk45f8YZaSlQqUClFjFGSezQlBAX22nFv8dROzCd9Op573QPQtcYRhhDereaTUcECB1RSjEW9AQNMOdJnKZMnqIBkETGAEycowvnNgCYccwHyDx0eRO95r6zYS73tS_XdfsZLTtb5aWOJqb11jRRZWz00jW-bvROh4Jp63anre_ZcVd-xWNjnO_xPtU2-qj9Olp0jdMqWph9SOYmV-4SnVV5CK-Oc4jeH6eryXM8f3uaTe7ncUkY9zEplVJcsVyEJ1RZFYKpUmNQkkAhOVaSJqAFk1Qo0HnCdCVlQdKiErTgUNEhuj3s3Vrz02nns43pbBtOZhQESzBJuQwUHKjSGuesrrKtrb9z-5thyHqtWdCa9Vqzo9ZQuTlUaq31P5ySlAmgf-dIdPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064712958</pqid></control><display><type>article</type><title>Dual Natural Switching Surface Control for Multilevel Noninverting Buck-Boost Converter With Pulsed Power Loads</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lin, Liheng ; Zhu, Zhen ; Liu, Yang ; Li, Zongjian ; Wang, Lei ; Ma, Fujun ; He, Zhixing</creator><creatorcontrib>Lin, Liheng ; Zhu, Zhen ; Liu, Yang ; Li, Zongjian ; Wang, Lei ; Ma, Fujun ; He, Zhixing</creatorcontrib><description>Pulsed power loads (PPLs) have the requirements of fast dynamic and high-power ratings, which may cause periodic power oscillations in traditional dc microgrid systems. Therefore, an improved dual natural switching surface (DNSS) boundary control law is proposed for multilevel noninverting buck-boost converter to dynamically synchronize the periodic power of PPLs within the minimum switching cycle by deriving and tracking the controlled trajectories. First, the variable structure model is established to derive the natural switching surfaces. Then, a graphical characteristic analysis of the transient switching trajectory is presented for the derivation of DNSSs, which can be divided into the primary and the secondary switching. Also, the control strategy based on DNSS is proposed. Due to the super dynamic performance of boundary control and the load characteristic of PPLs, the inductor current may be over the maximum permissible current, and online over-current protection is designed to achieve fast dynamic performance by limiting the inductor current. Finally, simulations and experiments are given to verify the proposed control law. The results show the proposed method has great dynamic performance for PPLs.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2023.3331163</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boundary control ; Boundary control (BC) ; Buck converters ; Control systems ; Control theory ; Distributed generation ; dual natural switching surface (DNSS) ; Inductors ; Multilevel converters ; multilevel noninverting buck-boost converter (ML-NIBB) ; Power rating ; pulsed power loads (PPLs) ; Switches ; Switching ; Topology ; Tracking control ; Trajectory ; Trajectory control ; Transient analysis ; variable structure control (VSC) ; voltage balance ; Voltage control</subject><ispartof>IEEE transactions on industrial electronics (1982), 2024-09, Vol.71 (9), p.10444-10454</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5500-1807 ; 0000-0003-4354-2611 ; 0000-0003-2511-4947 ; 0000-0002-4598-2744 ; 0000-0003-3400-0247 ; 0000-0002-7919-3970 ; 0000-0003-0931-0710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10329460$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lin, Liheng</creatorcontrib><creatorcontrib>Zhu, Zhen</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Li, Zongjian</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Ma, Fujun</creatorcontrib><creatorcontrib>He, Zhixing</creatorcontrib><title>Dual Natural Switching Surface Control for Multilevel Noninverting Buck-Boost Converter With Pulsed Power Loads</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Pulsed power loads (PPLs) have the requirements of fast dynamic and high-power ratings, which may cause periodic power oscillations in traditional dc microgrid systems. Therefore, an improved dual natural switching surface (DNSS) boundary control law is proposed for multilevel noninverting buck-boost converter to dynamically synchronize the periodic power of PPLs within the minimum switching cycle by deriving and tracking the controlled trajectories. First, the variable structure model is established to derive the natural switching surfaces. Then, a graphical characteristic analysis of the transient switching trajectory is presented for the derivation of DNSSs, which can be divided into the primary and the secondary switching. Also, the control strategy based on DNSS is proposed. Due to the super dynamic performance of boundary control and the load characteristic of PPLs, the inductor current may be over the maximum permissible current, and online over-current protection is designed to achieve fast dynamic performance by limiting the inductor current. Finally, simulations and experiments are given to verify the proposed control law. The results show the proposed method has great dynamic performance for PPLs.</description><subject>Boundary control</subject><subject>Boundary control (BC)</subject><subject>Buck converters</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Distributed generation</subject><subject>dual natural switching surface (DNSS)</subject><subject>Inductors</subject><subject>Multilevel converters</subject><subject>multilevel noninverting buck-boost converter (ML-NIBB)</subject><subject>Power rating</subject><subject>pulsed power loads (PPLs)</subject><subject>Switches</subject><subject>Switching</subject><subject>Topology</subject><subject>Tracking control</subject><subject>Trajectory</subject><subject>Trajectory control</subject><subject>Transient analysis</subject><subject>variable structure control (VSC)</subject><subject>voltage balance</subject><subject>Voltage control</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EEqWwMzBEYk45f8YZaSlQqUClFjFGSezQlBAX22nFv8dROzCd9Op573QPQtcYRhhDereaTUcECB1RSjEW9AQNMOdJnKZMnqIBkETGAEycowvnNgCYccwHyDx0eRO95r6zYS73tS_XdfsZLTtb5aWOJqb11jRRZWz00jW-bvROh4Jp63anre_ZcVd-xWNjnO_xPtU2-qj9Olp0jdMqWph9SOYmV-4SnVV5CK-Oc4jeH6eryXM8f3uaTe7ncUkY9zEplVJcsVyEJ1RZFYKpUmNQkkAhOVaSJqAFk1Qo0HnCdCVlQdKiErTgUNEhuj3s3Vrz02nns43pbBtOZhQESzBJuQwUHKjSGuesrrKtrb9z-5thyHqtWdCa9Vqzo9ZQuTlUaq31P5ySlAmgf-dIdPg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lin, Liheng</creator><creator>Zhu, Zhen</creator><creator>Liu, Yang</creator><creator>Li, Zongjian</creator><creator>Wang, Lei</creator><creator>Ma, Fujun</creator><creator>He, Zhixing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5500-1807</orcidid><orcidid>https://orcid.org/0000-0003-4354-2611</orcidid><orcidid>https://orcid.org/0000-0003-2511-4947</orcidid><orcidid>https://orcid.org/0000-0002-4598-2744</orcidid><orcidid>https://orcid.org/0000-0003-3400-0247</orcidid><orcidid>https://orcid.org/0000-0002-7919-3970</orcidid><orcidid>https://orcid.org/0000-0003-0931-0710</orcidid></search><sort><creationdate>20240901</creationdate><title>Dual Natural Switching Surface Control for Multilevel Noninverting Buck-Boost Converter With Pulsed Power Loads</title><author>Lin, Liheng ; Zhu, Zhen ; Liu, Yang ; Li, Zongjian ; Wang, Lei ; Ma, Fujun ; He, Zhixing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-2cddd5d4a6155dcfb64dce10d820b851d8370e64836d0ea74ef88b29bf63b50f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary control</topic><topic>Boundary control (BC)</topic><topic>Buck converters</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Distributed generation</topic><topic>dual natural switching surface (DNSS)</topic><topic>Inductors</topic><topic>Multilevel converters</topic><topic>multilevel noninverting buck-boost converter (ML-NIBB)</topic><topic>Power rating</topic><topic>pulsed power loads (PPLs)</topic><topic>Switches</topic><topic>Switching</topic><topic>Topology</topic><topic>Tracking control</topic><topic>Trajectory</topic><topic>Trajectory control</topic><topic>Transient analysis</topic><topic>variable structure control (VSC)</topic><topic>voltage balance</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Liheng</creatorcontrib><creatorcontrib>Zhu, Zhen</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Li, Zongjian</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Ma, Fujun</creatorcontrib><creatorcontrib>He, Zhixing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Liheng</au><au>Zhu, Zhen</au><au>Liu, Yang</au><au>Li, Zongjian</au><au>Wang, Lei</au><au>Ma, Fujun</au><au>He, Zhixing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Natural Switching Surface Control for Multilevel Noninverting Buck-Boost Converter With Pulsed Power Loads</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>71</volume><issue>9</issue><spage>10444</spage><epage>10454</epage><pages>10444-10454</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Pulsed power loads (PPLs) have the requirements of fast dynamic and high-power ratings, which may cause periodic power oscillations in traditional dc microgrid systems. Therefore, an improved dual natural switching surface (DNSS) boundary control law is proposed for multilevel noninverting buck-boost converter to dynamically synchronize the periodic power of PPLs within the minimum switching cycle by deriving and tracking the controlled trajectories. First, the variable structure model is established to derive the natural switching surfaces. Then, a graphical characteristic analysis of the transient switching trajectory is presented for the derivation of DNSSs, which can be divided into the primary and the secondary switching. Also, the control strategy based on DNSS is proposed. Due to the super dynamic performance of boundary control and the load characteristic of PPLs, the inductor current may be over the maximum permissible current, and online over-current protection is designed to achieve fast dynamic performance by limiting the inductor current. Finally, simulations and experiments are given to verify the proposed control law. The results show the proposed method has great dynamic performance for PPLs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2023.3331163</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5500-1807</orcidid><orcidid>https://orcid.org/0000-0003-4354-2611</orcidid><orcidid>https://orcid.org/0000-0003-2511-4947</orcidid><orcidid>https://orcid.org/0000-0002-4598-2744</orcidid><orcidid>https://orcid.org/0000-0003-3400-0247</orcidid><orcidid>https://orcid.org/0000-0002-7919-3970</orcidid><orcidid>https://orcid.org/0000-0003-0931-0710</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2024-09, Vol.71 (9), p.10444-10454
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_3064712958
source IEEE Electronic Library (IEL) Journals
subjects Boundary control
Boundary control (BC)
Buck converters
Control systems
Control theory
Distributed generation
dual natural switching surface (DNSS)
Inductors
Multilevel converters
multilevel noninverting buck-boost converter (ML-NIBB)
Power rating
pulsed power loads (PPLs)
Switches
Switching
Topology
Tracking control
Trajectory
Trajectory control
Transient analysis
variable structure control (VSC)
voltage balance
Voltage control
title Dual Natural Switching Surface Control for Multilevel Noninverting Buck-Boost Converter With Pulsed Power Loads
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Natural%20Switching%20Surface%20Control%20for%20Multilevel%20Noninverting%20Buck-Boost%20Converter%20With%20Pulsed%20Power%20Loads&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Lin,%20Liheng&rft.date=2024-09-01&rft.volume=71&rft.issue=9&rft.spage=10444&rft.epage=10454&rft.pages=10444-10454&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2023.3331163&rft_dat=%3Cproquest_cross%3E3064712958%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-2cddd5d4a6155dcfb64dce10d820b851d8370e64836d0ea74ef88b29bf63b50f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064712958&rft_id=info:pmid/&rft_ieee_id=10329460&rfr_iscdi=true