Loading…

Large Language Models for Generative Information Extraction: A Survey

Information extraction (IE) aims to extract structural knowledge from plain natural language texts. Recently, generative Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation. As a result, numerous works have been proposed to integrate LLMs for I...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Xu, Derong, Chen, Wei, Peng, Wenjun, Zhang, Chao, Xu, Tong, Zhao, Xiangyu, Wu, Xian, Zheng, Yefeng, Wang, Yang, Chen, Enhong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xu, Derong
Chen, Wei
Peng, Wenjun
Zhang, Chao
Xu, Tong
Zhao, Xiangyu
Wu, Xian
Zheng, Yefeng
Wang, Yang
Chen, Enhong
description Information extraction (IE) aims to extract structural knowledge from plain natural language texts. Recently, generative Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation. As a result, numerous works have been proposed to integrate LLMs for IE tasks based on a generative paradigm. To conduct a comprehensive systematic review and exploration of LLM efforts for IE tasks, in this study, we survey the most recent advancements in this field. We first present an extensive overview by categorizing these works in terms of various IE subtasks and techniques, and then we empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs. Based on a thorough review conducted, we identify several insights in technique and promising research directions that deserve further exploration in future studies. We maintain a public repository and consistently update related works and resources on GitHub (\href{https://github.com/quqxui/Awesome-LLM4IE-Papers}{LLM4IE repository})
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3064731458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064731458</sourcerecordid><originalsourceid>FETCH-proquest_journals_30647314583</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw9UksSk9V8EnMSy9NBDJ881NSc4oV0vKLFNxT81KLEksyy1IVPPOAArlAdn6egmtFSVFiMohppeCoEFxaVJZaycPAmpaYU5zKC6W5GZTdXEOcPXQLivILS1OLS-Kz8kuL8oBS8cYGZibmxoYmphbGxKkCAEv9OpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064731458</pqid></control><display><type>article</type><title>Large Language Models for Generative Information Extraction: A Survey</title><source>Publicly Available Content (ProQuest)</source><creator>Xu, Derong ; Chen, Wei ; Peng, Wenjun ; Zhang, Chao ; Xu, Tong ; Zhao, Xiangyu ; Wu, Xian ; Zheng, Yefeng ; Wang, Yang ; Chen, Enhong</creator><creatorcontrib>Xu, Derong ; Chen, Wei ; Peng, Wenjun ; Zhang, Chao ; Xu, Tong ; Zhao, Xiangyu ; Wu, Xian ; Zheng, Yefeng ; Wang, Yang ; Chen, Enhong</creatorcontrib><description>Information extraction (IE) aims to extract structural knowledge from plain natural language texts. Recently, generative Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation. As a result, numerous works have been proposed to integrate LLMs for IE tasks based on a generative paradigm. To conduct a comprehensive systematic review and exploration of LLM efforts for IE tasks, in this study, we survey the most recent advancements in this field. We first present an extensive overview by categorizing these works in terms of various IE subtasks and techniques, and then we empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs. Based on a thorough review conducted, we identify several insights in technique and promising research directions that deserve further exploration in future studies. We maintain a public repository and consistently update related works and resources on GitHub (\href{https://github.com/quqxui/Awesome-LLM4IE-Papers}{LLM4IE repository})</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Empirical analysis ; Information retrieval ; Large language models ; Natural language processing</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3064731458?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Xu, Derong</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Peng, Wenjun</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Xu, Tong</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>Wu, Xian</creatorcontrib><creatorcontrib>Zheng, Yefeng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Chen, Enhong</creatorcontrib><title>Large Language Models for Generative Information Extraction: A Survey</title><title>arXiv.org</title><description>Information extraction (IE) aims to extract structural knowledge from plain natural language texts. Recently, generative Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation. As a result, numerous works have been proposed to integrate LLMs for IE tasks based on a generative paradigm. To conduct a comprehensive systematic review and exploration of LLM efforts for IE tasks, in this study, we survey the most recent advancements in this field. We first present an extensive overview by categorizing these works in terms of various IE subtasks and techniques, and then we empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs. Based on a thorough review conducted, we identify several insights in technique and promising research directions that deserve further exploration in future studies. We maintain a public repository and consistently update related works and resources on GitHub (\href{https://github.com/quqxui/Awesome-LLM4IE-Papers}{LLM4IE repository})</description><subject>Empirical analysis</subject><subject>Information retrieval</subject><subject>Large language models</subject><subject>Natural language processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw9UksSk9V8EnMSy9NBDJ881NSc4oV0vKLFNxT81KLEksyy1IVPPOAArlAdn6egmtFSVFiMohppeCoEFxaVJZaycPAmpaYU5zKC6W5GZTdXEOcPXQLivILS1OLS-Kz8kuL8oBS8cYGZibmxoYmphbGxKkCAEv9OpA</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Xu, Derong</creator><creator>Chen, Wei</creator><creator>Peng, Wenjun</creator><creator>Zhang, Chao</creator><creator>Xu, Tong</creator><creator>Zhao, Xiangyu</creator><creator>Wu, Xian</creator><creator>Zheng, Yefeng</creator><creator>Wang, Yang</creator><creator>Chen, Enhong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241031</creationdate><title>Large Language Models for Generative Information Extraction: A Survey</title><author>Xu, Derong ; Chen, Wei ; Peng, Wenjun ; Zhang, Chao ; Xu, Tong ; Zhao, Xiangyu ; Wu, Xian ; Zheng, Yefeng ; Wang, Yang ; Chen, Enhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30647314583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Empirical analysis</topic><topic>Information retrieval</topic><topic>Large language models</topic><topic>Natural language processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Derong</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Peng, Wenjun</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Xu, Tong</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>Wu, Xian</creatorcontrib><creatorcontrib>Zheng, Yefeng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Chen, Enhong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Derong</au><au>Chen, Wei</au><au>Peng, Wenjun</au><au>Zhang, Chao</au><au>Xu, Tong</au><au>Zhao, Xiangyu</au><au>Wu, Xian</au><au>Zheng, Yefeng</au><au>Wang, Yang</au><au>Chen, Enhong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Large Language Models for Generative Information Extraction: A Survey</atitle><jtitle>arXiv.org</jtitle><date>2024-10-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Information extraction (IE) aims to extract structural knowledge from plain natural language texts. Recently, generative Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation. As a result, numerous works have been proposed to integrate LLMs for IE tasks based on a generative paradigm. To conduct a comprehensive systematic review and exploration of LLM efforts for IE tasks, in this study, we survey the most recent advancements in this field. We first present an extensive overview by categorizing these works in terms of various IE subtasks and techniques, and then we empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs. Based on a thorough review conducted, we identify several insights in technique and promising research directions that deserve further exploration in future studies. We maintain a public repository and consistently update related works and resources on GitHub (\href{https://github.com/quqxui/Awesome-LLM4IE-Papers}{LLM4IE repository})</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3064731458
source Publicly Available Content (ProQuest)
subjects Empirical analysis
Information retrieval
Large language models
Natural language processing
title Large Language Models for Generative Information Extraction: A Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Large%20Language%20Models%20for%20Generative%20Information%20Extraction:%20A%20Survey&rft.jtitle=arXiv.org&rft.au=Xu,%20Derong&rft.date=2024-10-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3064731458%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30647314583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064731458&rft_id=info:pmid/&rfr_iscdi=true