Loading…
Recombinant VLP Vaccines Synthesized in Plant Expression Systems: Current Updates and Prospects
The development and creation of a new generation vaccines based on recombinant proteins that assemble into virus-like particles (VLPs), as well as recombinant proteins in the form of nanoparticles, are promising directions in modern biotechnology. Due to their large size (20–200 nm) and multiplicity...
Saved in:
Published in: | Molecular biology (New York) 2024, Vol.58 (3), p.402-418 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development and creation of a new generation vaccines based on recombinant proteins that assemble into virus-like particles (VLPs), as well as recombinant proteins in the form of nanoparticles, are promising directions in modern biotechnology. Due to their large size (20–200 nm) and multiplicity of viral antigenic determinants on the surface, VLPs can stimulate strong humoral and cellular immune responses. The main types of VLPs, as well as the features and disadvantages of the main expression systems used for their biosynthesis, are considered in this review. The main focus was on plant expression systems that ensure the biosynthesis of a target recombinant protein from a DNA matrix integrated into the nuclear or chloroplast genomes of a plant (stable expression) or from a matrix for temporary production of the target product (transient expression). Various approaches for increasing the yield of VLP-forming recombinant proteins, including fusion with a transit peptide that directed the protein into the chloroplast, were discussed. The possibility of accumulation of recombinant proteins expressed in plants and intended for creation of VLP-vaccines in another type of nanoparticle, protein bodies, using specific signal sequences was also considered. |
---|---|
ISSN: | 0026-8933 1608-3245 |
DOI: | 10.1134/S0026893324700043 |