Loading…

Experimental investigation, modelling, and order of magnitude analysis of oxygen mass transfer in pulsed plate column with α‐Fe2O3 nanofluid

Volumetric oxygen mass transfer coefficient (kLa) is an important parameter in the design of various reactors and bioreactors. In the present work, the influence of α‐Fe2O3 nanofluid on the enhancement of kLa is studied in a pulsed plate column (PPC). An enhancement factor of greater than one showed...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of chemical engineering 2024-07, Vol.102 (7), p.2608-2627
Main Authors: Shet, Amruta S., Shetty K., Vidya
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2627
container_issue 7
container_start_page 2608
container_title Canadian journal of chemical engineering
container_volume 102
creator Shet, Amruta S.
Shetty K., Vidya
description Volumetric oxygen mass transfer coefficient (kLa) is an important parameter in the design of various reactors and bioreactors. In the present work, the influence of α‐Fe2O3 nanofluid on the enhancement of kLa is studied in a pulsed plate column (PPC). An enhancement factor of greater than one showed that the nanofluid is favourable in enhancing the mass transfer rate. The effect of pulsing velocity on kLa is observed to fall under two regimes: the dispersion regime and emulsion regime. The kLa enhancement factor is found to be higher in TiO2 nanofluid than in α‐Fe2O3 nanofluid, indicating that the type of nanofluid influences the enhancement factor. The order of magnitude analysis showed that localized convection triggered by the Brownian motion of nanoparticles is the phenomenon responsible for kLa enhancement. A dimensionless multiple regression analysis (MRA) model was developed to predict kLa in the nanoparticle loading range of 0.003–0.019 (v/v%), relating the Sherwood number with oscillating Reynolds number (1200 ≤ Reo ≤ 20,000), gas flow Reynolds number (0.135 ≤ Reg ≤0.370), Schmidt number (1300 ≤ Sc ≤2700), and Brownian Reynolds number (2.81 × 10−4 ≤ ReB ≤5 × 10−4). The pseudo‐homogeneous model could accurately predict the enhancement until critical loading conditions.
doi_str_mv 10.1002/cjce.25207
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3065074315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065074315</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2257-608ddcbeeaee7873608612f592f05e2ae976247118d09a7a170e6c8d9897b0bf3</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqWw4QSW2BIYOz9Olqhq-RFSNyCxi9x4Uly5dogTaHbcAK7CRTgEJ8GlrGbem6eR3kfIKYMLBsAvq1WFFzzlIPbIiBVxEQErnvbJCADyKIE4OSRH3q-C5JCwEfmYbhps9RptJw3V9hV9p5ey086e07VTaIy2y3MqraKuVdhSV9O1XFrd9QqDLc3gtd-6bjMs0Yaj97RrpfV1SGtLm954VLQxskNaOdOvLX3T3TP9_vp5_5whn8fUSutq02t1TA5qGfIn_3NMHmfTh8lNdD-_vp1c3UcN56mIMsiVqhaIElHkIg46Y7xOC15DilxiITKeCMZyBYUUkgnArMpVkRdiAYs6HpOz3d-mdS99KF2uXN-GNr6MIUtBJDFLQ4rtUm_a4FA2AZRsh5JBuaVdbmmXf7TLyd1k-rfFv2-4eKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065074315</pqid></control><display><type>article</type><title>Experimental investigation, modelling, and order of magnitude analysis of oxygen mass transfer in pulsed plate column with α‐Fe2O3 nanofluid</title><source>Wiley</source><creator>Shet, Amruta S. ; Shetty K., Vidya</creator><creatorcontrib>Shet, Amruta S. ; Shetty K., Vidya</creatorcontrib><description>Volumetric oxygen mass transfer coefficient (kLa) is an important parameter in the design of various reactors and bioreactors. In the present work, the influence of α‐Fe2O3 nanofluid on the enhancement of kLa is studied in a pulsed plate column (PPC). An enhancement factor of greater than one showed that the nanofluid is favourable in enhancing the mass transfer rate. The effect of pulsing velocity on kLa is observed to fall under two regimes: the dispersion regime and emulsion regime. The kLa enhancement factor is found to be higher in TiO2 nanofluid than in α‐Fe2O3 nanofluid, indicating that the type of nanofluid influences the enhancement factor. The order of magnitude analysis showed that localized convection triggered by the Brownian motion of nanoparticles is the phenomenon responsible for kLa enhancement. A dimensionless multiple regression analysis (MRA) model was developed to predict kLa in the nanoparticle loading range of 0.003–0.019 (v/v%), relating the Sherwood number with oscillating Reynolds number (1200 ≤ Reo ≤ 20,000), gas flow Reynolds number (0.135 ≤ Reg ≤0.370), Schmidt number (1300 ≤ Sc ≤2700), and Brownian Reynolds number (2.81 × 10−4 ≤ ReB ≤5 × 10−4). The pseudo‐homogeneous model could accurately predict the enhancement until critical loading conditions.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.25207</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Bioreactors ; Critical loading ; Design parameters ; Dimensionless analysis ; enhancement factor ; Fluid dynamics ; Fluid flow ; Gas flow ; Mass transfer ; Multiple regression analysis ; Nanofluids ; Nanoparticles ; Oxygen ; Plate columns ; pulsed plate column ; pulsing velocity ; Regression models ; Reynolds number ; Schmidt number ; Titanium dioxide ; α‐Fe2O3 nanofluid</subject><ispartof>Canadian journal of chemical engineering, 2024-07, Vol.102 (7), p.2608-2627</ispartof><rights>2024 Canadian Society for Chemical Engineering.</rights><rights>2024 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shet, Amruta S.</creatorcontrib><creatorcontrib>Shetty K., Vidya</creatorcontrib><title>Experimental investigation, modelling, and order of magnitude analysis of oxygen mass transfer in pulsed plate column with α‐Fe2O3 nanofluid</title><title>Canadian journal of chemical engineering</title><description>Volumetric oxygen mass transfer coefficient (kLa) is an important parameter in the design of various reactors and bioreactors. In the present work, the influence of α‐Fe2O3 nanofluid on the enhancement of kLa is studied in a pulsed plate column (PPC). An enhancement factor of greater than one showed that the nanofluid is favourable in enhancing the mass transfer rate. The effect of pulsing velocity on kLa is observed to fall under two regimes: the dispersion regime and emulsion regime. The kLa enhancement factor is found to be higher in TiO2 nanofluid than in α‐Fe2O3 nanofluid, indicating that the type of nanofluid influences the enhancement factor. The order of magnitude analysis showed that localized convection triggered by the Brownian motion of nanoparticles is the phenomenon responsible for kLa enhancement. A dimensionless multiple regression analysis (MRA) model was developed to predict kLa in the nanoparticle loading range of 0.003–0.019 (v/v%), relating the Sherwood number with oscillating Reynolds number (1200 ≤ Reo ≤ 20,000), gas flow Reynolds number (0.135 ≤ Reg ≤0.370), Schmidt number (1300 ≤ Sc ≤2700), and Brownian Reynolds number (2.81 × 10−4 ≤ ReB ≤5 × 10−4). The pseudo‐homogeneous model could accurately predict the enhancement until critical loading conditions.</description><subject>Bioreactors</subject><subject>Critical loading</subject><subject>Design parameters</subject><subject>Dimensionless analysis</subject><subject>enhancement factor</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Gas flow</subject><subject>Mass transfer</subject><subject>Multiple regression analysis</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Oxygen</subject><subject>Plate columns</subject><subject>pulsed plate column</subject><subject>pulsing velocity</subject><subject>Regression models</subject><subject>Reynolds number</subject><subject>Schmidt number</subject><subject>Titanium dioxide</subject><subject>α‐Fe2O3 nanofluid</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEqWw4QSW2BIYOz9Olqhq-RFSNyCxi9x4Uly5dogTaHbcAK7CRTgEJ8GlrGbem6eR3kfIKYMLBsAvq1WFFzzlIPbIiBVxEQErnvbJCADyKIE4OSRH3q-C5JCwEfmYbhps9RptJw3V9hV9p5ey086e07VTaIy2y3MqraKuVdhSV9O1XFrd9QqDLc3gtd-6bjMs0Yaj97RrpfV1SGtLm954VLQxskNaOdOvLX3T3TP9_vp5_5whn8fUSutq02t1TA5qGfIn_3NMHmfTh8lNdD-_vp1c3UcN56mIMsiVqhaIElHkIg46Y7xOC15DilxiITKeCMZyBYUUkgnArMpVkRdiAYs6HpOz3d-mdS99KF2uXN-GNr6MIUtBJDFLQ4rtUm_a4FA2AZRsh5JBuaVdbmmXf7TLyd1k-rfFv2-4eKc</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Shet, Amruta S.</creator><creator>Shetty K., Vidya</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202407</creationdate><title>Experimental investigation, modelling, and order of magnitude analysis of oxygen mass transfer in pulsed plate column with α‐Fe2O3 nanofluid</title><author>Shet, Amruta S. ; Shetty K., Vidya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2257-608ddcbeeaee7873608612f592f05e2ae976247118d09a7a170e6c8d9897b0bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioreactors</topic><topic>Critical loading</topic><topic>Design parameters</topic><topic>Dimensionless analysis</topic><topic>enhancement factor</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Gas flow</topic><topic>Mass transfer</topic><topic>Multiple regression analysis</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Oxygen</topic><topic>Plate columns</topic><topic>pulsed plate column</topic><topic>pulsing velocity</topic><topic>Regression models</topic><topic>Reynolds number</topic><topic>Schmidt number</topic><topic>Titanium dioxide</topic><topic>α‐Fe2O3 nanofluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shet, Amruta S.</creatorcontrib><creatorcontrib>Shetty K., Vidya</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shet, Amruta S.</au><au>Shetty K., Vidya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation, modelling, and order of magnitude analysis of oxygen mass transfer in pulsed plate column with α‐Fe2O3 nanofluid</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2024-07</date><risdate>2024</risdate><volume>102</volume><issue>7</issue><spage>2608</spage><epage>2627</epage><pages>2608-2627</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>Volumetric oxygen mass transfer coefficient (kLa) is an important parameter in the design of various reactors and bioreactors. In the present work, the influence of α‐Fe2O3 nanofluid on the enhancement of kLa is studied in a pulsed plate column (PPC). An enhancement factor of greater than one showed that the nanofluid is favourable in enhancing the mass transfer rate. The effect of pulsing velocity on kLa is observed to fall under two regimes: the dispersion regime and emulsion regime. The kLa enhancement factor is found to be higher in TiO2 nanofluid than in α‐Fe2O3 nanofluid, indicating that the type of nanofluid influences the enhancement factor. The order of magnitude analysis showed that localized convection triggered by the Brownian motion of nanoparticles is the phenomenon responsible for kLa enhancement. A dimensionless multiple regression analysis (MRA) model was developed to predict kLa in the nanoparticle loading range of 0.003–0.019 (v/v%), relating the Sherwood number with oscillating Reynolds number (1200 ≤ Reo ≤ 20,000), gas flow Reynolds number (0.135 ≤ Reg ≤0.370), Schmidt number (1300 ≤ Sc ≤2700), and Brownian Reynolds number (2.81 × 10−4 ≤ ReB ≤5 × 10−4). The pseudo‐homogeneous model could accurately predict the enhancement until critical loading conditions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cjce.25207</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-4034
ispartof Canadian journal of chemical engineering, 2024-07, Vol.102 (7), p.2608-2627
issn 0008-4034
1939-019X
language eng
recordid cdi_proquest_journals_3065074315
source Wiley
subjects Bioreactors
Critical loading
Design parameters
Dimensionless analysis
enhancement factor
Fluid dynamics
Fluid flow
Gas flow
Mass transfer
Multiple regression analysis
Nanofluids
Nanoparticles
Oxygen
Plate columns
pulsed plate column
pulsing velocity
Regression models
Reynolds number
Schmidt number
Titanium dioxide
α‐Fe2O3 nanofluid
title Experimental investigation, modelling, and order of magnitude analysis of oxygen mass transfer in pulsed plate column with α‐Fe2O3 nanofluid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation,%20modelling,%20and%20order%20of%20magnitude%20analysis%20of%20oxygen%20mass%20transfer%20in%20pulsed%20plate%20column%20with%20%CE%B1%E2%80%90Fe2O3%20nanofluid&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Shet,%20Amruta%20S.&rft.date=2024-07&rft.volume=102&rft.issue=7&rft.spage=2608&rft.epage=2627&rft.pages=2608-2627&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.25207&rft_dat=%3Cproquest_wiley%3E3065074315%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2257-608ddcbeeaee7873608612f592f05e2ae976247118d09a7a170e6c8d9897b0bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3065074315&rft_id=info:pmid/&rfr_iscdi=true