Loading…

A Deadlock Prevention Strategy for Petri Nets Through Tuning Time Constraints

Deadlocks are of paramount importance in resource allocation systems, which are usually treated from the perspective of discrete event systems. This paper develops a deadlock prevention strategy for a system modeled with Petri nets, by endowing appropriate time constraints with certain transitions t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.78759-78772
Main Authors: Zhai, Qianlong, Hu, Xin, El-Sherbeeny, Ahmed M., Li, Zhiwu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-47511475c775ebe2e0d5a18c66ecbfd5bb07f886fbaba8b36d687c3934efeb913
container_end_page 78772
container_issue
container_start_page 78759
container_title IEEE access
container_volume 12
creator Zhai, Qianlong
Hu, Xin
El-Sherbeeny, Ahmed M.
Li, Zhiwu
description Deadlocks are of paramount importance in resource allocation systems, which are usually treated from the perspective of discrete event systems. This paper develops a deadlock prevention strategy for a system modeled with Petri nets, by endowing appropriate time constraints with certain transitions to schedule the firing priority of enabled transitions in a Petri net such that transition sequences leading to deadlocks are prohibited, i.e., expanding an untimed Petri net model into a time Petri net to prevent deadlocks. To increase the system permissiveness of a time Petri net with time constraints endowed, a control place is designed, which does not expand the reachable space of the original Petri net. The predominant role of the control place is to convert continuously enabled transitions at certain markings into newly enabled transitions, which can prolong the firing time of transitions. Furthermore, we propose a method that merely enumerates deadlock prevention condition inequalities to derive a series of time constraints by probing the connection between deadlock prevention conditions and transitions. The developed method only needs to designate time constraints for partial transitions. Examples are provided to demonstrate the effectiveness of the presented methodology.
doi_str_mv 10.1109/ACCESS.2024.3408637
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3065464650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10545646</ieee_id><doaj_id>oai_doaj_org_article_25152f2b918a487893937417564c83b7</doaj_id><sourcerecordid>3065464650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-47511475c775ebe2e0d5a18c66ecbfd5bb07f886fbaba8b36d687c3934efeb913</originalsourceid><addsrcrecordid>eNpNUUtLAzEQXkRBUX-BHgKeW5PNc49lfYIvaD2HJDtbU-tGk1Tovze6Is5hZhi-x8BXVScETwnBzfmsbS_n82mNazalDCtB5U51UBPRTCinYvffvl8dp7TCpVQ5cXlQ3c_QBZhuHdwreorwCUP2YUDzHE2G5Rb1IaInyNGjB8gJLV5i2Cxf0GIz-GGJFv4NUBuGVOB-yOmo2uvNOsHx7zysnq8uF-3N5O7x-rad3U0c5U2eMMkJKc1JycFCDbjjhignBDjbd9xaLHulRG-NNcpS0QklHW0ogx5sQ-hhdTvqdsGs9Hv0byZudTBe_xxCXGoTs3dr0DUnvO7rwlKGKamaIiMZkVwwp6iVRets1HqP4WMDKetV2MShvK8pFpwJJjguKDqiXAwpRej_XAnW3zHoMQb9HYP-jaGwTkeWB4B_DM6KvaBfpMOCPg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065464650</pqid></control><display><type>article</type><title>A Deadlock Prevention Strategy for Petri Nets Through Tuning Time Constraints</title><source>IEEE Open Access Journals</source><creator>Zhai, Qianlong ; Hu, Xin ; El-Sherbeeny, Ahmed M. ; Li, Zhiwu</creator><creatorcontrib>Zhai, Qianlong ; Hu, Xin ; El-Sherbeeny, Ahmed M. ; Li, Zhiwu</creatorcontrib><description>Deadlocks are of paramount importance in resource allocation systems, which are usually treated from the perspective of discrete event systems. This paper develops a deadlock prevention strategy for a system modeled with Petri nets, by endowing appropriate time constraints with certain transitions to schedule the firing priority of enabled transitions in a Petri net such that transition sequences leading to deadlocks are prohibited, i.e., expanding an untimed Petri net model into a time Petri net to prevent deadlocks. To increase the system permissiveness of a time Petri net with time constraints endowed, a control place is designed, which does not expand the reachable space of the original Petri net. The predominant role of the control place is to convert continuously enabled transitions at certain markings into newly enabled transitions, which can prolong the firing time of transitions. Furthermore, we propose a method that merely enumerates deadlock prevention condition inequalities to derive a series of time constraints by probing the connection between deadlock prevention conditions and transitions. The developed method only needs to designate time constraints for partial transitions. Examples are provided to demonstrate the effectiveness of the presented methodology.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3408637</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Burning time ; deadlock prevention ; discrete event system ; Discrete event systems ; Firing ; Graph theory ; Petri nets ; Prevention ; Resource allocation ; Resource management ; Sequences ; System recovery ; time constraint ; Time factors ; Time Petri net ; Tuning</subject><ispartof>IEEE access, 2024, Vol.12, p.78759-78772</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-47511475c775ebe2e0d5a18c66ecbfd5bb07f886fbaba8b36d687c3934efeb913</cites><orcidid>0009-0004-7694-649X ; 0000-0003-3559-6249 ; 0000-0003-1547-5503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10545646$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Zhai, Qianlong</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>El-Sherbeeny, Ahmed M.</creatorcontrib><creatorcontrib>Li, Zhiwu</creatorcontrib><title>A Deadlock Prevention Strategy for Petri Nets Through Tuning Time Constraints</title><title>IEEE access</title><addtitle>Access</addtitle><description>Deadlocks are of paramount importance in resource allocation systems, which are usually treated from the perspective of discrete event systems. This paper develops a deadlock prevention strategy for a system modeled with Petri nets, by endowing appropriate time constraints with certain transitions to schedule the firing priority of enabled transitions in a Petri net such that transition sequences leading to deadlocks are prohibited, i.e., expanding an untimed Petri net model into a time Petri net to prevent deadlocks. To increase the system permissiveness of a time Petri net with time constraints endowed, a control place is designed, which does not expand the reachable space of the original Petri net. The predominant role of the control place is to convert continuously enabled transitions at certain markings into newly enabled transitions, which can prolong the firing time of transitions. Furthermore, we propose a method that merely enumerates deadlock prevention condition inequalities to derive a series of time constraints by probing the connection between deadlock prevention conditions and transitions. The developed method only needs to designate time constraints for partial transitions. Examples are provided to demonstrate the effectiveness of the presented methodology.</description><subject>Burning time</subject><subject>deadlock prevention</subject><subject>discrete event system</subject><subject>Discrete event systems</subject><subject>Firing</subject><subject>Graph theory</subject><subject>Petri nets</subject><subject>Prevention</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Sequences</subject><subject>System recovery</subject><subject>time constraint</subject><subject>Time factors</subject><subject>Time Petri net</subject><subject>Tuning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLAzEQXkRBUX-BHgKeW5PNc49lfYIvaD2HJDtbU-tGk1Tovze6Is5hZhi-x8BXVScETwnBzfmsbS_n82mNazalDCtB5U51UBPRTCinYvffvl8dp7TCpVQ5cXlQ3c_QBZhuHdwreorwCUP2YUDzHE2G5Rb1IaInyNGjB8gJLV5i2Cxf0GIz-GGJFv4NUBuGVOB-yOmo2uvNOsHx7zysnq8uF-3N5O7x-rad3U0c5U2eMMkJKc1JycFCDbjjhignBDjbd9xaLHulRG-NNcpS0QklHW0ogx5sQ-hhdTvqdsGs9Hv0byZudTBe_xxCXGoTs3dr0DUnvO7rwlKGKamaIiMZkVwwp6iVRets1HqP4WMDKetV2MShvK8pFpwJJjguKDqiXAwpRej_XAnW3zHoMQb9HYP-jaGwTkeWB4B_DM6KvaBfpMOCPg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhai, Qianlong</creator><creator>Hu, Xin</creator><creator>El-Sherbeeny, Ahmed M.</creator><creator>Li, Zhiwu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-7694-649X</orcidid><orcidid>https://orcid.org/0000-0003-3559-6249</orcidid><orcidid>https://orcid.org/0000-0003-1547-5503</orcidid></search><sort><creationdate>2024</creationdate><title>A Deadlock Prevention Strategy for Petri Nets Through Tuning Time Constraints</title><author>Zhai, Qianlong ; Hu, Xin ; El-Sherbeeny, Ahmed M. ; Li, Zhiwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-47511475c775ebe2e0d5a18c66ecbfd5bb07f886fbaba8b36d687c3934efeb913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Burning time</topic><topic>deadlock prevention</topic><topic>discrete event system</topic><topic>Discrete event systems</topic><topic>Firing</topic><topic>Graph theory</topic><topic>Petri nets</topic><topic>Prevention</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Sequences</topic><topic>System recovery</topic><topic>time constraint</topic><topic>Time factors</topic><topic>Time Petri net</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Qianlong</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>El-Sherbeeny, Ahmed M.</creatorcontrib><creatorcontrib>Li, Zhiwu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Qianlong</au><au>Hu, Xin</au><au>El-Sherbeeny, Ahmed M.</au><au>Li, Zhiwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deadlock Prevention Strategy for Petri Nets Through Tuning Time Constraints</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>78759</spage><epage>78772</epage><pages>78759-78772</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Deadlocks are of paramount importance in resource allocation systems, which are usually treated from the perspective of discrete event systems. This paper develops a deadlock prevention strategy for a system modeled with Petri nets, by endowing appropriate time constraints with certain transitions to schedule the firing priority of enabled transitions in a Petri net such that transition sequences leading to deadlocks are prohibited, i.e., expanding an untimed Petri net model into a time Petri net to prevent deadlocks. To increase the system permissiveness of a time Petri net with time constraints endowed, a control place is designed, which does not expand the reachable space of the original Petri net. The predominant role of the control place is to convert continuously enabled transitions at certain markings into newly enabled transitions, which can prolong the firing time of transitions. Furthermore, we propose a method that merely enumerates deadlock prevention condition inequalities to derive a series of time constraints by probing the connection between deadlock prevention conditions and transitions. The developed method only needs to designate time constraints for partial transitions. Examples are provided to demonstrate the effectiveness of the presented methodology.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3408637</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0004-7694-649X</orcidid><orcidid>https://orcid.org/0000-0003-3559-6249</orcidid><orcidid>https://orcid.org/0000-0003-1547-5503</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.78759-78772
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3065464650
source IEEE Open Access Journals
subjects Burning time
deadlock prevention
discrete event system
Discrete event systems
Firing
Graph theory
Petri nets
Prevention
Resource allocation
Resource management
Sequences
System recovery
time constraint
Time factors
Time Petri net
Tuning
title A Deadlock Prevention Strategy for Petri Nets Through Tuning Time Constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deadlock%20Prevention%20Strategy%20for%20Petri%20Nets%20Through%20Tuning%20Time%20Constraints&rft.jtitle=IEEE%20access&rft.au=Zhai,%20Qianlong&rft.date=2024&rft.volume=12&rft.spage=78759&rft.epage=78772&rft.pages=78759-78772&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3408637&rft_dat=%3Cproquest_cross%3E3065464650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-47511475c775ebe2e0d5a18c66ecbfd5bb07f886fbaba8b36d687c3934efeb913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3065464650&rft_id=info:pmid/&rft_ieee_id=10545646&rfr_iscdi=true