Loading…
Geomorphic signatures of neotectonic activity along the Western Andean Front in the Chilean Andes (35°S to 37°S)
Characterizing neotectonic activity along mountain fronts in active orogens is the key to better understanding trajectories of landscape evolution, climatic‐tectonic couplings and natural hazards. One such prominent mountain front is the Western Andean Front (WAF), which defines the boundary between...
Saved in:
Published in: | Earth surface processes and landforms 2024-06, Vol.49 (7), p.2205-2228 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Characterizing neotectonic activity along mountain fronts in active orogens is the key to better understanding trajectories of landscape evolution, climatic‐tectonic couplings and natural hazards. One such prominent mountain front is the Western Andean Front (WAF), which defines the boundary between two main physiographic units along the Chilean Andes (15°S to 39°S): the Central Depression and Principal Cordillera. This study analyses the geomorphic imprints of neotectonic fault activity in the WAF between 35°S and 37°S. We used several topographic metrics, including the mountain‐front sinuosity index (Smf), the valley floor width‐to‐height ratio (Vf) and the stream length‐gradient (SL) index to gain information about the regional distribution of deformation patterns and its relative tectonic activity for distinctive segments. In addition, a raster map combining rock strength (RS) and mean annual precipitation (MAP) allowed discriminating lithology‐climate vs. tectonics influence on SL anomalies from catchments spanning from the main deformation zone to the regional drainage divide. We use the local relief and swath profiles to quantify the incision and transient state of mountain fronts to evaluate the geomorphic response to tectonic and/or climatic input. Our analysis highlights significant variations from north to south, delineating two distinct segments with different topographic, geomorphic and geometric fault characteristics. These segments are indented at approximately 36°S. From north to south, there is a segment with an inactive thrust front with a primarily climate‐driven fluvial response over long timescales and a second segment with a transient state adjusting to relatively high uplift rates. Morphometric data analysis, DEM‐based morpho‐structural maps, geological maps and previous research support the interpretation of two sets of neotectonic faults: (1) NNE‐striking reverse faults with a dextral slip component and (2) NW‐striking sinistral slip faults, likely a response to deformation partitioning caused by oblique subduction on a continental margin.
This study analyses geomorphic signatures to characterize neotectonic activity along the Andean Western Front between 35°S and 37°S. Results reveal two distinct segments: a northern segment with an inactive thrust front and climate‐driven fluvial response, and a southern segment adjusting to high uplift rates from two fault sets (NNE ‐ NW). |
---|---|
ISSN: | 0197-9337 1096-9837 |
DOI: | 10.1002/esp.5825 |