Loading…

Towards Naturalistic Voice Conversion: NaturalVoices Dataset with an Automatic Processing Pipeline

Voice conversion (VC) research traditionally depends on scripted or acted speech, which lacks the natural spontaneity of real-life conversations. While natural speech data is limited for VC, our study focuses on filling in this gap. We introduce a novel data-sourcing pipeline that makes the release...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-06
Main Authors: Salman, Ali N, Du, Zongyang, Chandra, Shreeram Suresh, Ismail, Rasim Ulgen, Busso, Carlos, Sisman, Berrak
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Salman, Ali N
Du, Zongyang
Chandra, Shreeram Suresh
Ismail, Rasim Ulgen
Busso, Carlos
Sisman, Berrak
description Voice conversion (VC) research traditionally depends on scripted or acted speech, which lacks the natural spontaneity of real-life conversations. While natural speech data is limited for VC, our study focuses on filling in this gap. We introduce a novel data-sourcing pipeline that makes the release of a natural speech dataset for VC, named NaturalVoices. The pipeline extracts rich information in speech such as emotion and signal-to-noise ratio (SNR) from raw podcast data, utilizing recent deep learning methods and providing flexibility and ease of use. NaturalVoices marks a large-scale, spontaneous, expressive, and emotional speech dataset, comprising over 3,800 hours speech sourced from the original podcasts in the MSP-Podcast dataset. Objective and subjective evaluations demonstrate the effectiveness of using our pipeline for providing natural and expressive data for VC, suggesting the potential of NaturalVoices for broader speech generation tasks.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3066134435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066134435</sourcerecordid><originalsourceid>FETCH-proquest_journals_30661344353</originalsourceid><addsrcrecordid>eNqNy0ELgjAYxvERBEn5HQadhbmpRbewolN4kK6ybNUrttneLb9-FnXv9Bx-_2dEAi5EHC0TzickRGwYYzxb8DQVATmVppf2jPQgnbeyBXRQ06OBWtHc6KeyCEavfvwBpBvpJCpHe3A3KjVde2fu8v0srBkCBH2lBXSqBa1mZHyRLarwu1My323LfB911jy8Qlc1xls9UCVYlsUiSUQq_qte2Q1GJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066134435</pqid></control><display><type>article</type><title>Towards Naturalistic Voice Conversion: NaturalVoices Dataset with an Automatic Processing Pipeline</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Salman, Ali N ; Du, Zongyang ; Chandra, Shreeram Suresh ; Ismail, Rasim Ulgen ; Busso, Carlos ; Sisman, Berrak</creator><creatorcontrib>Salman, Ali N ; Du, Zongyang ; Chandra, Shreeram Suresh ; Ismail, Rasim Ulgen ; Busso, Carlos ; Sisman, Berrak</creatorcontrib><description>Voice conversion (VC) research traditionally depends on scripted or acted speech, which lacks the natural spontaneity of real-life conversations. While natural speech data is limited for VC, our study focuses on filling in this gap. We introduce a novel data-sourcing pipeline that makes the release of a natural speech dataset for VC, named NaturalVoices. The pipeline extracts rich information in speech such as emotion and signal-to-noise ratio (SNR) from raw podcast data, utilizing recent deep learning methods and providing flexibility and ease of use. NaturalVoices marks a large-scale, spontaneous, expressive, and emotional speech dataset, comprising over 3,800 hours speech sourced from the original podcasts in the MSP-Podcast dataset. Objective and subjective evaluations demonstrate the effectiveness of using our pipeline for providing natural and expressive data for VC, suggesting the potential of NaturalVoices for broader speech generation tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Signal to noise ratio ; Speech recognition</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3066134435?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Salman, Ali N</creatorcontrib><creatorcontrib>Du, Zongyang</creatorcontrib><creatorcontrib>Chandra, Shreeram Suresh</creatorcontrib><creatorcontrib>Ismail, Rasim Ulgen</creatorcontrib><creatorcontrib>Busso, Carlos</creatorcontrib><creatorcontrib>Sisman, Berrak</creatorcontrib><title>Towards Naturalistic Voice Conversion: NaturalVoices Dataset with an Automatic Processing Pipeline</title><title>arXiv.org</title><description>Voice conversion (VC) research traditionally depends on scripted or acted speech, which lacks the natural spontaneity of real-life conversations. While natural speech data is limited for VC, our study focuses on filling in this gap. We introduce a novel data-sourcing pipeline that makes the release of a natural speech dataset for VC, named NaturalVoices. The pipeline extracts rich information in speech such as emotion and signal-to-noise ratio (SNR) from raw podcast data, utilizing recent deep learning methods and providing flexibility and ease of use. NaturalVoices marks a large-scale, spontaneous, expressive, and emotional speech dataset, comprising over 3,800 hours speech sourced from the original podcasts in the MSP-Podcast dataset. Objective and subjective evaluations demonstrate the effectiveness of using our pipeline for providing natural and expressive data for VC, suggesting the potential of NaturalVoices for broader speech generation tasks.</description><subject>Datasets</subject><subject>Signal to noise ratio</subject><subject>Speech recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy0ELgjAYxvERBEn5HQadhbmpRbewolN4kK6ybNUrttneLb9-FnXv9Bx-_2dEAi5EHC0TzickRGwYYzxb8DQVATmVppf2jPQgnbeyBXRQ06OBWtHc6KeyCEavfvwBpBvpJCpHe3A3KjVde2fu8v0srBkCBH2lBXSqBa1mZHyRLarwu1My323LfB911jy8Qlc1xls9UCVYlsUiSUQq_qte2Q1GJQ</recordid><startdate>20240606</startdate><enddate>20240606</enddate><creator>Salman, Ali N</creator><creator>Du, Zongyang</creator><creator>Chandra, Shreeram Suresh</creator><creator>Ismail, Rasim Ulgen</creator><creator>Busso, Carlos</creator><creator>Sisman, Berrak</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240606</creationdate><title>Towards Naturalistic Voice Conversion: NaturalVoices Dataset with an Automatic Processing Pipeline</title><author>Salman, Ali N ; Du, Zongyang ; Chandra, Shreeram Suresh ; Ismail, Rasim Ulgen ; Busso, Carlos ; Sisman, Berrak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30661344353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Signal to noise ratio</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Salman, Ali N</creatorcontrib><creatorcontrib>Du, Zongyang</creatorcontrib><creatorcontrib>Chandra, Shreeram Suresh</creatorcontrib><creatorcontrib>Ismail, Rasim Ulgen</creatorcontrib><creatorcontrib>Busso, Carlos</creatorcontrib><creatorcontrib>Sisman, Berrak</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salman, Ali N</au><au>Du, Zongyang</au><au>Chandra, Shreeram Suresh</au><au>Ismail, Rasim Ulgen</au><au>Busso, Carlos</au><au>Sisman, Berrak</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Naturalistic Voice Conversion: NaturalVoices Dataset with an Automatic Processing Pipeline</atitle><jtitle>arXiv.org</jtitle><date>2024-06-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Voice conversion (VC) research traditionally depends on scripted or acted speech, which lacks the natural spontaneity of real-life conversations. While natural speech data is limited for VC, our study focuses on filling in this gap. We introduce a novel data-sourcing pipeline that makes the release of a natural speech dataset for VC, named NaturalVoices. The pipeline extracts rich information in speech such as emotion and signal-to-noise ratio (SNR) from raw podcast data, utilizing recent deep learning methods and providing flexibility and ease of use. NaturalVoices marks a large-scale, spontaneous, expressive, and emotional speech dataset, comprising over 3,800 hours speech sourced from the original podcasts in the MSP-Podcast dataset. Objective and subjective evaluations demonstrate the effectiveness of using our pipeline for providing natural and expressive data for VC, suggesting the potential of NaturalVoices for broader speech generation tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3066134435
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Datasets
Signal to noise ratio
Speech recognition
title Towards Naturalistic Voice Conversion: NaturalVoices Dataset with an Automatic Processing Pipeline
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Naturalistic%20Voice%20Conversion:%20NaturalVoices%20Dataset%20with%20an%20Automatic%20Processing%20Pipeline&rft.jtitle=arXiv.org&rft.au=Salman,%20Ali%20N&rft.date=2024-06-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3066134435%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30661344353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3066134435&rft_id=info:pmid/&rfr_iscdi=true